Article

Atonal Homolog 1 Is Required for Growth and Differentiation Effects of Notch/gamma-Secretase Inhibitors on Normal and Cancerous Intestinal Epithelial Cells

Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Gastroenterology (Impact Factor: 13.93). 09/2010; 139(3):918-28, 928.e1-6. DOI: 10.1053/j.gastro.2010.05.081
Source: PubMed

ABSTRACT The atonal homolog 1 (Atoh1) transcription factor is required for intestinal secretory (goblet, Paneth, enteroendocrine) cell differentiation. Notch/gamma-secretase inhibitors (GSIs) block proliferation and induce secretory cell differentiation in the intestine. We used genetic analyses of mice to determine whether Atoh1 mediates the effects of GSIs in normal and cancerous intestinal epithelia.
We studied mice with intestine-specific disruption of Atoh1 (Atoh1(Deltaintestine)), the adenomatosis polyposis coli (APC)(min) mutation, both mutations (Atoh1(Deltaintestine); APC(min)), or littermate controls; mice were given GSI or vehicle. Colorectal cancer (CRC) cell lines were treated with GSI or vehicle and with small hairpin RNAs to reduce ATOH1. Differentiation and homeostasis were assessed by protein, RNA, and histologic analyses.
GSIs failed to induce secretory cell differentiation or apoptosis or decrease proliferation of Atoh1-null progenitor cells, compared with wild-type cells. Exposure of APC(min) adenomas to GSIs decreased proliferation and increased secretory cell numbers in an Atoh1-dependent manner. In CRC cells treated with GSI, ATOH1 levels were correlated inversely with proliferation. ATOH1 was required for secretory cell gene expression in cell lines and in mice.
ATOH1 is required for all effects of GSIs in intestinal crypts and adenomas; Notch has no unique function in intestinal progenitors and cancer cells other than to regulate ATOH1 expression. Reducing ATOH1 activity might mitigate intestinal toxicity from systemic GSI therapy for nonintestinal diseases. Among gastrointestinal malignancies, ATOH1 mediates the effects of GSIs, so ATOH1 expression levels might predict responses to these inhibitors. We propose that only the subset of CRCs that retain ATOH1 expression will respond to GSIs.

0 Followers
 · 
102 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proper organ homeostasis requires tight control of adult stem cells and differentiation through the integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a derepression of the Wnt signaling pathway, leading to misexpression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; DOI:10.1016/j.celrep.2015.03.007 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Barrett's esophagus (BE) is defined as an incomplete intestinal metaplasia characterized generally by the presence of columnar and goblet cells in the formerly stratified squamous epithelium of the esophagus. BE is known as a precursor for esophageal adenocarcinoma. Currently, the cell of origin for human BE has yet to be clearly identified. Therefore, we investigated the role of Notch signaling in the initiation of BE metaplasia. Affymetrix gene expression microarray revealed that BE samples express decreased levels of Notch receptors (NOTCH2 and NOTCH3) and one of the the ligands (JAG1). Furthermore, BE tissue microarray showed decreased expression of NOTCH1 and its downstream target HES1. Therefore, Notch signaling was inhibited in human esophageal epithelial cells by expression of dominant-negative-Mastermind-like (dnMAML), in concert with MYC and CDX1 overexpression. Cell transdifferentiation was then assessed by 3D organotypic culture and evaluation of BE-lineage specific gene expression. Notch inhibition promoted transdifferentiation of esophageal epithelial cells toward columnar-like cells as demonstrated by increased expression of columnar keratins (K8, K18, K19, K20) and glandular mucins (MUC2, MUC3B, MUC5B, MUC17) and decreased expression of squamous keratins (K5, K13, K14). In 3D culture, elongated cells were observed in the basal layer of the epithelium with Notch inhibition. Furthermore, we observed increased expression of KLF4, a potential driver of the changes observed by Notch inhibition. Interestingly, knockdown of KLF4 reversed the effects of Notch inhibition on BE-like metaplasia. Overall, Notch signaling inhibition promotes transdifferentiation of esophageal cells toward BE-like metaplasia in part via upregulation of KLF4. These results support a novel mechanism through which esophageal epithelial transdifferentiation promotes the evolution of BE.
    Cell cycle (Georgetown, Tex.) 12/2014; 13(24):3857-66. DOI:10.4161/15384101.2014.972875 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intestine is composed of an epithelial layer containing rapidly proliferating cells that mature into two regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for intestinal epithelial cells, no studies have directly compared stem cells derived from these anatomically distinct regions. Here, we examine intrinsic differences between primary epithelial cells isolated from human fetal small and large intestine, after in vitro expansion, using the Wnt agonist R-spondin 2. We utilized flow cytometry, fluorescence-activated cell sorting, gene expression analysis and a three-dimensional in vitro differentiation assay to characterize their stem cell properties. We identified stem cell markers that separate subpopulations of colony-forming cells in the small and large intestine and revealed important differences in differentiation, proliferation and disease pathways using gene expression analysis. Single cells from small and large intestine cultures formed organoids that reflect the distinct cellular hierarchy found in vivo and respond differently to identical exogenous cues. Our characterization identified numerous differences between small and large intestine epithelial stem cells suggesting possible connections to intestinal disease.
    PLoS ONE 03/2015; 10(3):e0118792. DOI:10.1371/journal.pone.0118792 · 3.53 Impact Factor