Article

Progressive motor weakness in transgenic mice expressing human TDP-43.

Department of Neurology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
Neurobiology of Disease (Impact Factor: 5.2). 11/2010; 40(2):404-14. DOI: 10.1016/j.nbd.2010.06.017
Source: PubMed

ABSTRACT Familial ALS patients with TDP-43 gene mutations and sporadic ALS patients share common TDP-43 neuronal pathology. To delineate mechanisms underlying TDP-43 proteinopathies, transgenic mice expressing A315T, M337V or wild type human TDP-43 were generated. Multiple TDP-43 founders developed a severe early motor phenotype that correlated with TDP-43 levels in spinal cord. Three A315T TDP-43 lines developed later onset paralysis with cytoplasmic ubiquitin inclusions, gliosis and TDP-43 redistribution and fragmentation. The WT TDP-43 mouse line with highest spinal cord expression levels remains asymptomatic, although these mice show spinal cord pathology. One WT TDP-43 line with high skeletal muscle levels of TDP-43 developed a severe progressive myopathy. Over-expression of TDP-43 in vivo is sufficient to produce progressive motor phenotypes by a toxic gain of function paradigm. Transgenic mouse lines expressing untagged mutant and wild type TDP-43 under the same promoter represent a powerful new model system for studying TDP-43 proteinopathies in vivo.

0 Followers
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular viability depends upon the well-orchestrated functions carried out by numerous protein-coding and non-coding RNAs, as well as RNA-binding proteins. During the last decade, it has become increasingly evident that abnormalities in RNA processing represent a common feature among many neurodegenerative diseases. In "RNAopathies", which include diseases caused by non-coding repeat expansions, RNAs exert toxicity via diverse mechanisms: RNA foci formation, bidirectional transcription, and the production of toxic RNAs and proteins by repeat associated non-ATG translation. The mechanisms of toxicity in "RNA-binding proteinopathies", diseases in which RNA-binding proteins like TDP-43 and FUS play a prominent role, have yet to be fully elucidated. Nonetheless, both loss of function of the RNA binding protein, and a toxic gain of function resulting from its aggregation, are thought to be involved in disease pathogenesis. As part of the special issue on RNA and Splicing Regulation in Neurodegeneration, this review intends to explore the diverse RNA-related mechanisms contributing to neurodegeneration, with a special emphasis on findings emerging from animal models.
    Molecular and Cellular Neuroscience 12/2012; 56. DOI:10.1016/j.mcn.2012.12.006 · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein inclusion is a prominent feature of neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) that is characterized by the presence of ubiquitinated TDP-43 inclusion. Presence of protein inclusions indicates an interruption to protein degradation machinery or the overload of misfolded proteins. In response to the increase in misfolded proteins, cells usually initiate a mechanism called unfolded protein response (UPR) to reduce misfolded proteins in the lumen of endoplasmic reticules. Here, we examined the effects of mutant TDP-43 on the UPR in transgenic rats that express mutant human TDP-43 restrictedly in the neurons of the forebrain. Over-expression of mutant TDP-43 in rats caused prominent aggregation of ubiquitin and remarkable fragmentation of Golgi complexes prior to neuronal loss. While ubiquitin aggregates and Golgi fragments were accumulating, neurons expressing mutant TDP-43 failed to up-regulate chaperones residing in the endoplasmic reticules and failed to initiate the UPR. Prior to ubiquitin aggregation and Golgi fragmentation, neurons were depleted of X-box-binding protein 1 (XBP1), a key player of UPR machinery. Although it remains to determine how mutation of TDP-43 leads to the failure of the UPR, our data demonstrate that failure of the UPR is implicated in TDP-43 pathogenesis.
    Journal of Neurochemistry 09/2012; 123(3):406-16. DOI:10.1111/jnc.12014 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Initially implicated in the pathogenesis of CFTR and HIV-1 transcription, nuclear factor TDP-43 was subsequently found to be involved in the origin and development of several neurodegenerative diseases. In 2006, in fact, it was reported for the first time the cytoplasmic accumulation of TDP-43 in ubiquitin-positive inclusions of ALS and FTLD patients, suggesting the presence of a shared underlying mechanism for these diseases. Today, different animal models of TDP-43 proteinopathies are available in rodents, nematodes, fishes, and flies. Although these models recapitulate several of the pathological features found in patients, the mechanisms underpinning the progressive neuronal loss observed in TDP-43 proteinopathies remain to be characterized. Compared to other models, Drosophila are appealing because they combine the presence of a sophisticated brain with the possibility to investigate quickly and massively phenotypic genetic modifiers as well as possible therapeutic strategies. At present, the development of TDP-43-related Drosophila models has further strengthened the hypothesis that both TDP-43 "loss-of-function" and "gain-of-function" mechanisms can contribute to disease. The aim of this paper is to describe and compare the results obtained in a series of transgenic and knockout flies, along with the information they have generated, towards a better understanding of the mechanisms underlying TDP-43 proteinopathies.
    04/2012; 2012:356081. DOI:10.1155/2012/356081