Reprogramming of T Cells from Human Peripheral Blood

Division of Pediatric Hematology Oncology, Department of Biological Chemistry and Molecular Pharmacology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
Cell stem cell (Impact Factor: 22.15). 07/2010; 7(1):15-9. DOI: 10.1016/j.stem.2010.06.004
Source: PubMed


Available from: Philip Manos, Jun 15, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human induced pluripotent stem cells (hiPSCs) have been derived from various somatic cell types. Granulosa cells, a group of cells which surround oocytes and are obtained from the (normally discarded) retrieved egg follicles of women undergoing infertility treatment, are a possible cell source for induced pluripotent stem cell (iPSC) generation. Here, we explored the possibility of using human granulosa cells as a donor cell type for iPSC reprogramming, and compared granulosa cell-derived iPSCs (iGRAs) with those derived from other cell sources, to determine the potential ability of iGRA differentiation. Granulosa cells were collected from egg follicles retrieved from women undergoing infertility treatment. After short-term culture, the granulosa cells derived from different patients were mixed in culture, and infected with retroviruses encoding reprogramming factors. The resulting iPSC clones were selected and subjected to microsatellite DNA analysis to determine their parental origin. IGRAs were subjected to RT-PCR, immunofluorescence staining, and in vitro and in vivo differentiation assays to further establish their pluripotent characteristics. Microsatellite DNA analysis was used to demonstrate that hiPSCs with different parental origins can be simultaneously reprogrammed by retroviral transfection of a mixed human granulosa cell population obtained from multiple individuals. The iGRAs resemble human embryonic stem cells (hESCs) in many respects, including morphological traits, growth requirements, gene and marker expression profiles, and in vitro and in vivo developmental propensities. We also demonstrate that the iGRAs express low levels of NLRP2, and differentiating iGRAs possess a biased differentiation potential toward the trophoblastic lineage. Although NLRP2 knockdown in hESCs promotes trophoblastic differentiation of differentiating hESCs, it does not result in exit from pluripotency. These results imply that NLRP2 may play a role in regulating the trophoblastic differentiation of human pluripotent stem cells. These findings provide a means of generating iPSCs from multiple granulosa cell populations with different parental origins. The ability to generate iPSCs from granulosa cells not only enables modeling of infertility-associated disease, but also provides a means of identifying potential clinical interventions through iPSC-based drug screening.
    Stem Cell Research & Therapy 02/2015; 6(1):14. DOI:10.1186/s13287-015-0005-5 · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.
    Cell Proliferation 01/2015; 48(2). DOI:10.1111/cpr.12162 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.
    Journal of Hematology & Oncology 07/2014; 7(1):50. DOI:10.1186/s13045-014-0050-z · 4.93 Impact Factor