Article

Reprogramming of T Cells from Human Peripheral Blood

Division of Pediatric Hematology Oncology, Department of Biological Chemistry and Molecular Pharmacology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
Cell stem cell (Impact Factor: 22.15). 07/2010; 7(1):15-9. DOI: 10.1016/j.stem.2010.06.004
Source: PubMed
0 Followers
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells (iPSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying iPSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as iPSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of iPSCs can become established. In this review, we discuss the current technologies and future problems of human iPSC generation methods for clinical use.
    01/2015; 7(1):116-125. DOI:10.4252/wjsc.v7.i1.116
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.
    Cell Proliferation 01/2015; DOI:10.1111/cpr.12162 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking.
    STEM CELLS TRANSLATIONAL MEDICINE 10/2014; 3(12). DOI:10.5966/sctm.2014-0113 · 3.60 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
May 20, 2014