Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways

Interdepartmental Program for Neuroscience, Department of Human Genetics and Biostatistics, University of California, Los Angeles, CA 90095-1769, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/2010; 107(28):12698-703. DOI: 10.1073/pnas.0914257107
Source: PubMed

ABSTRACT Because mouse models play a crucial role in biomedical research related to the human nervous system, understanding the similarities and differences between mouse and human brain is of fundamental importance. Studies comparing transcription in human and mouse have come to varied conclusions, in part because of their relatively small sample sizes or underpowered methodologies. To better characterize gene expression differences between mouse and human, we took a systems-biology approach by using weighted gene coexpression network analysis on more than 1,000 microarrays from brain. We find that global network properties of the brain transcriptome are highly preserved between species. Furthermore, all modules of highly coexpressed genes identified in mouse were identified in human, with those related to conserved cellular functions showing the strongest between-species preservation. Modules corresponding to glial and neuronal cells were sufficiently preserved between mouse and human to permit identification of cross species cell-class marker genes. We also identify several robust human-specific modules, including one strongly correlated with measures of Alzheimer disease progression across multiple data sets, whose hubs are poorly-characterized genes likely involved in Alzheimer disease. We present multiple lines of evidence suggesting links between neurodegenerative disease and glial cell types in human, including human-specific correlation of presenilin-1 with oligodendrocyte markers, and significant enrichment for known neurodegenerative disease genes in microglial modules. Together, this work identifies convergent and divergent pathways in mouse and human, and provides a systematic framework that will be useful for understanding the applicability of mouse models for human brain disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of breast cancer subtypes and subsequent development of treatments aimed at them has allowed for a great reduction in the mortality of breast cancer. But despite this progress, tumors with similar characteristics that belong to the same subtype continue to respond differently to the same treatment. Five subtypes of breast cancer, namely intrinsic subtypes, have been characterized to date based on their gene expression profiles. Among other characteristics, subtypes vary in their degree of intra-subtype heterogeneity. It is not clear, however, whether this heterogeneity is shared across all tumor traits. It is also unclear whether individual traits can be highly heterogeneous among a majority of homogeneous traits. We employ network theory to uncover gene modules and accordingly consider them as tumor traits, which capture shared biological processes among the subtypes. We then use the β-diversity metric from ecology to quantify the heterogeneity in these gene modules. In doing so, we show that breast cancer heterogeneity is contained in gene modules and that this modular heterogeneity increases monotonically across the subtypes. We identify a core of two modules that are shared among all subtypes which contain nucleosome assembly and mammary morphogenesis genes, and a number of modules that are specific to subtypes. This modular heterogeneity, which increases with global heterogeneity, relates to tumor aggressiveness. Indeed, we observe that Luminal A, the most treatable of subtypes, has the lowest modular heterogeneity whereas the Basal-like subtype, which is among the hardest to treat, has the highest. Furthermore, our analysis shows that a higher degree of global heterogeneity does not imply higher heterogeneity for all modules, as Luminal B shows the highest heterogeneity for core modules. Overall, modular heterogeneity provides a framework with which to dissect cancer heterogeneity and better understand its underpinnings, thereby ultimately advancing our knowledge towards a more effective personalized cancer therapy.
    BioData Mining 12/2014; 7:27. DOI:10.1186/1756-0381-7-27 · 1.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. Results The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. Conclusions The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1431-6) contains supplementary material, which is available to authorized users.
    BMC Genomics 04/2015; 16(1). DOI:10.1186/s12864-015-1431-6 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Domestication of the wild pig has led to obese and lean phenotype breeds, and evolutionary genome research has sought to identify the regulatory mechanisms underlying this phenotypic diversity. However, revealing the molecular mechanisms underlying muscle phenotype variation based on differentially expressed genes has proved to be difficult. To characterize the mechanisms regulating muscle phenotype variation under artificial selection, we aimed to provide an integrated view of genome organization by weighted gene coexpression network analysis.ResultsOur analysis was based on 20 publicly available next-generation sequencing datasets of lean and obese pig muscle generated from 10 developmental stages. The evolution of the constructed coexpression modules was examined using the genome resequencing data of 37 domestic pigs and 11 wild boars. Our results showed the regulation of muscle development might be more complex than had been previously acknowledged, and is regulated by the coordinated action of muscle, nerve and immunity related genes. Breed-specific modules that regulated muscle phenotype divergence were identified, and hundreds of hub genes with major roles in muscle development were determined to be responsible for key functional distinctions between breeds. Our evolutionary analysis showed that the role of changes in the coding sequence under positive selection in muscle phenotype divergence was minor.Conclusions Muscle phenotype divergence was found to be regulated by the divergence of coexpression network modules under artificial selection, and not by changes in the coding sequence of genes. Our results present multiple lines of evidence suggesting links between modules and muscle phenotypes, and provide insights into the molecular bases of genome organization in muscle development and phenotype variation.
    BMC Genomics 02/2015; 16(1):50. DOI:10.1186/s12864-015-1238-5 · 4.04 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014