Article

Combinatorial extracellular matrices for human embryonic stem cell differentiation in 3D.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 45 Carleton Street, E25-342, Cambridge, Massachusetts 02139, USA.
Biomacromolecules (Impact Factor: 5.79). 08/2010; 11(8):1909-14. DOI: 10.1021/bm100357t
Source: PubMed

ABSTRACT Embryonic stem cells (ESCs) are promising cell sources for tissue engineering and regenerative medicine. Scaffolds for ESC-based tissue regeneration should provide not only structural support, but also signals capable of supporting appropriate cell differentiation and tissue development. Extracellular matrix (ECM) is a key component of the stem cell niche in vivo and can influence stem cell fate via mediating cell attachment and migration, presenting chemical and physical cues, as well as binding soluble factors. Here we investigated the effects of combinatorial extracellular matrix proteins on controlled human ESC (hESC) differentiation. Varying ECM compositions in 3D markedly affects cell behavior, and optimal compositions of ECM hydrogels are identified that facilitate specific-lineage differentiation of stem cells. To our knowledge, this is the first combinatorial analysis of ECM hydrogels for their effects on hESC differentiation in 3D. The 3D matrices described herein may provide a useful platform for studying the interactive ECM signaling in influencing stem cell differentiation.

1 Bookmark
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current methods for screening cell-material interactions typically utilize a two-dimensional (2D) culture format where cells are cultured on flat surfaces. However, there is a need for combinatorial and high-throughput screening methods to systematically screen cell-biomaterial interactions in three-dimensional (3D) tissue scaffolds for tissue engineering. Previously, we developed a two-syringe pump approach for making 3D scaffold gradients for use in combinatorial screening of salt-leached scaffolds. Herein, we demonstrate that the two-syringe pump approach can also be used to create scaffold gradients using a gas-foaming approach. Macroporous foams prepared by a gas-foaming technique are commonly used for fabrication of tissue engineering scaffolds due to their high interconnectivity and good mechanical properties. Gas-foamed scaffold gradient libraries were fabricated from two biodegradable tyrosine-derived polycarbonates: poly(desaminotyrosyl-tyrosine ethyl ester carbonate) (pDTEc) and poly(desaminotyrosyl-tyrosine octyl ester carbonate) (pDTOc). The composition of the libraries was assessed with Fourier transform infrared spectroscopy (FTIR) and showed that pDTEc/pDTOc gas-foamed scaffold gradients could be repeatably fabricated. Scanning electron microscopy showed that scaffold morphology was similar between the pDTEc-rich ends and the pDTOc-rich ends of the gradient. These results introduce a method for fabricating gas-foamed polymer scaffold gradients that can be used for combinatorial screening of cell-material interactions in 3D.
    Journal of functional biomaterials. 12/2012; 3(1):173-82.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The behaviour of mammalian cells in a tissue is governed by the three-dimensional (3D) microenvironment and involves a dynamic interplay between biochemical and mechanical signals provided by the extracellular matrix (ECM), cell-cell interactions and soluble factors. The complexity of the microenvironment and the context-dependent cell responses that arise from these interactions have posed a major challenge to understanding the underlying regulatory mechanisms. Here we develop an experimental paradigm to dissect the role of various interacting factors by simultaneously synthesizing more than 1,000 unique microenvironments with robotic nanolitre liquid-dispensing technology and by probing their effects on cell fate. Using this novel 3D microarray platform, we assess the combined effects of matrix elasticity, proteolytic degradability and three distinct classes of signalling proteins on mouse embryonic stem cells, unveiling a comprehensive map of interactions involved in regulating self-renewal. This approach is broadly applicable to gain a systems-level understanding of multifactorial 3D cell-matrix interactions.
    Nature Communications 07/2014; 5:4324. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell microenvironment is dynamically regulated by the cellular component, including stem cells themselves. Thus, a mechanism exists whereby stem cells modify the ECM which in turn affects the fate of the stem cell. In this study, we investigated whether the type of ECM initially adsorbed to the culture substrate can influence the composition of the ECM deposited by human embryonic stem cells (hESCs) differentiating in embryoid bodies, and whether different ECM composition and deposition profiles elicit distinct differentiation fates. We have shown that the initial ECM environment hESCs are exposed to affects the fate decisions of those cells and that this initial ECM environment is constantly modified during the differentiation process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 2014
    Biotechnology Progress 10/2014; · 1.88 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
May 28, 2014