Article

The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects.

Centre de Resssources autisme de Bretagne, CHRU Brest Hopital Bohars, Bohars, France.
Acta Paediatrica (Impact Factor: 1.97). 12/2010; 99(12):1885-8. DOI: 10.1111/j.1651-2227.2010.01933.x
Source: PubMed

ABSTRACT The inhibitory transmitter GABA has been suggested to play an important role in infantile autistic syndrome (IAS), and extensive investigations suggest that excitatory actions of GABA in neurological disorders are because of a persistent increase of [Cl(-) ](I) .
  To test the effects of the chloride co-transporter NKCC1 diuretic compound Bumetanide that reduces [Cl(-) ](I) on IAS.
  Bumetanide was administered daily (1mg daily) during a 3-month period and clinical and biological tests made. We used 5 standard IAS severity tests - Childhood Autism Rating Scale, Aberrant Behaviour Checklist, Clinical Global Impressions; Repetitive and Restrictive Behaviour and the Regulation Disorder Evaluation Grid.
 We report a significant improvement in IAS with no side effects.
 Bumetanide decreases autistic behaviour with no side effects suggesting that diuretic agents may exert beneficial effects on IAS and that alterations of the actions of GABA may be efficient in IAS treatment calling for large scale randomized trials.

0 Bookmarks
 · 
226 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To review the published literature and registered clinical trials on pharmacologic interventions targeting social communication impairment in Autism Spectrum Disorder (ASD). A comprehensive search of several databases (PubMed, MEDLINE, PsycINFO, Clinical trials.gov) was conducted to identify pharmacologic agents that have been, or will be, tested as treatments for social communication impairment in individuals with ASD. Evidence from basic science research supporting rational drug discovery is surveyed. Data from animal models and early clinical trials suggest that novel and existing compounds, including N-methyl-D-aspartate (NMDA) modulators, γ-aminobutyric acid (GABA) agonists, metabotropic glutamate receptor (mGluR) antagonists and neuropeptides, may enhance social communication/function in ASD. Results from numerous Phase 2 and Phase 3 clinical trials are expected in the near future. Recent evidence suggests that social communication may be an appropriate target for pharmacologic manipulation. It is hoped that, in combination with behavioural interventions, novel therapeutics may soon be clinically available to help improve social outcomes.
    Journal of the Canadian Academy of Child and Adolescent Psychiatry = Journal de l'Academie canadienne de psychiatrie de l'enfant et de l'adolescent 02/2014; 23(1):20-30.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.
    Psychopharmacology 01/2014; · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
    Frontiers in Cellular Neuroscience 01/2014; 8:119. · 4.47 Impact Factor

Full-text (2 Sources)

View
54 Downloads
Available from
May 27, 2014