Article

The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects.

Centre de Resssources autisme de Bretagne, CHRU Brest Hopital Bohars, Bohars, France.
Acta Paediatrica (Impact Factor: 1.97). 12/2010; 99(12):1885-8. DOI: 10.1111/j.1651-2227.2010.01933.x
Source: PubMed

ABSTRACT The inhibitory transmitter GABA has been suggested to play an important role in infantile autistic syndrome (IAS), and extensive investigations suggest that excitatory actions of GABA in neurological disorders are because of a persistent increase of [Cl(-) ](I) .
  To test the effects of the chloride co-transporter NKCC1 diuretic compound Bumetanide that reduces [Cl(-) ](I) on IAS.
  Bumetanide was administered daily (1mg daily) during a 3-month period and clinical and biological tests made. We used 5 standard IAS severity tests - Childhood Autism Rating Scale, Aberrant Behaviour Checklist, Clinical Global Impressions; Repetitive and Restrictive Behaviour and the Regulation Disorder Evaluation Grid.
 We report a significant improvement in IAS with no side effects.
 Bumetanide decreases autistic behaviour with no side effects suggesting that diuretic agents may exert beneficial effects on IAS and that alterations of the actions of GABA may be efficient in IAS treatment calling for large scale randomized trials.

0 Bookmarks
 · 
255 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter gated ionic currents follow a developmental sequence and network driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost 3 decades ago where we observed elevated intracellular chloride (Cl-)i levels and excitatory GABA early during development and a perinatal excitatory /inhibitory shift. This sequence is observed in a wide range of brain structures and animal species suggesting that it has been conserved throughout evolution. It is mediated primarily by a developmentally regulated expression of the NKCC1 and KCC2 choride importer and exporter respectively. The GABAergic depolarisation acts in synergy with NMDA receptor mediated and voltage gated calcium currents to enhance intracellular calcium exerting trophic effects on neuritic growth, migration and synapse formation. These sequences can be deviated in utero by genetic or environmental insults leading to a persistence of immature features in the adult brain. This “neuroarcheology” concept paves the way to novel therapeutic perspectives based on the use of drugs that block immature but not adult currents. This is illustrated notably with the return to immature high levels of chloride and excitatory actions of GABA observed in many pathological conditions. This is due to as in the immature brain a down regulation of KCC2 and an up regulation of NKCC1. Here, I present a personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders. Being a personal account, this review is neither exhaustive nor provides an update of this topic with all the studies that have contributed to this evolution. We all rely on previous inventors to allow science to advance. Here, I present a personal summary of this topic primarily to illustrate why we often fail to comprehend the implications of our own observations. They remind us – and policy deciders- why Science cannot be programmed, requiring time, risky investigations that raise interesting questions before being translated from bench to bed. Discoveries are always on side ways, never on highways.
    Neuroscience 01/2014; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: γ-Aminobutyric acid (GABA), the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or N-methyl-d-aspartate receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation, and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as autism spectrum disorders (ASDs) are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review, we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman, and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders.
    Frontiers in Pediatrics 01/2014; 2:70.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The developmental pathophysiology of autism spectrum disorders (ASD) is currently not fully understood. However, multiple lines of evidence suggest that the behavioral phenotype may result from dysfunctional inhibitory control over excitatory synaptic plasticity. Consistent with this claim, previous studies indicate that adults with Asperger's Syndrome show an abnormally extended modulation of corticospinal excitability following a train of repetitive transcranial magnetic stimulation (rTMS). As ASD is a developmental disorder, the current study aimed to explore the effect of development on the duration of modulation of corticospinal excitability in children and adolescents with ASD. Additionally, as the application of rTMS to the understanding and treatment of pediatric neurological and psychiatric disorders is an emerging field, this study further sought to provide evidence for the safety and tolerability of rTMS in children and adolescents with ASD. Corticospinal excitability was measured by applying single pulses of TMS to the primary motor cortex both before and following a 40 s train of continuous theta burst stimulation. 19 high-functioning males ages 9-18 with ASD participated in this study. Results from this study reveal a positive linear relationship between age and duration of modulation of rTMS after-effects. Specifically we found that the older participants had a longer lasting response. Furthermore, though the specific protocol employed typically suppresses corticospinal excitability in adults, more than one third of our sample had a paradoxical facilitatory response to the stimulation. Results support the safety and tolerability of rTMS in pediatric clinical populations. Data also support published theories implicating aberrant plasticity and GABAergic dysfunction in this population.
    Frontiers in Human Neuroscience 01/2014; 8:627. · 2.91 Impact Factor

Full-text (2 Sources)

Download
71 Downloads
Available from
May 27, 2014