Article

Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice.

Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 10/2010; 335(1):140-8. DOI: 10.1124/jpet.110.169540
Source: PubMed

ABSTRACT Lecithin cholesterol acyl transferase (LCAT) deficiency is associated with low high-density lipoprotein (HDL) and the presence of an abnormal lipoprotein called lipoprotein X (Lp-X) that contributes to end-stage renal disease. We examined the possibility of using LCAT an as enzyme replacement therapy agent by testing the infusion of human recombinant (r)LCAT into several mouse models of LCAT deficiency. Infusion of plasma from human LCAT transgenic mice into LCAT-knockout (KO) mice rapidly increased HDL-cholesterol (C) and lowered cholesterol in fractions containing very-low-density lipoprotein (VLDL) and Lp-X. rLCAT was produced in a stably transfected human embryonic kidney 293f cell line and purified to homogeneity, with a specific activity of 1850 nmol/mg/h. Infusion of rLCAT intravenously, subcutaneously, or intramuscularly into human apoA-I transgenic mice showed a nearly identical effect in increasing HDL-C approximately 2-fold. When rLCAT was intravenously injected into LCAT-KO mice, it showed a similar effect as plasma from human LCAT transgenic mice in correcting the abnormal lipoprotein profile, but it had a considerably shorter half-life of approximately 1.23 ± 0.63 versus 8.29 ± 1.82 h for the plasma infusion. rLCAT intravenously injected in LCAT-KO mice crossed with human apolipoprotein (apo)A-I transgenic mice had a half-life of 7.39 ± 2.1 h and increased HDL-C more than 8-fold. rLCAT treatment of LCAT-KO mice was found to increase cholesterol efflux to HDL isolated from mice when added to cells transfected with either ATP-binding cassette (ABC) transporter A1 or ABCG1. In summary, rLCAT treatment rapidly restored the normal lipoprotein phenotype in LCAT-KO mice and increased cholesterol efflux, suggesting the possibility of using rLCAT as an enzyme replacement therapy agent for LCAT deficiency.

0 Bookmarks
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of endothelial barrier function is implicated in the etiology of metastasis, atherosclerosis, sepsis and many other diseases. Studies suggest that sphingosine-1-phosphate (S1P), particularly HDL-bound S1P (HDL-S1P) is essential for endothelial barrier homeostasis and that HDL-S1P may be protective against loss of endothelial barrier function in disease. This review summarizes evidence providing mechanistic insights into how S1P maintains endothelial barrier function, highlighting the recent findings that implicate the major S1P carrier, HDL, in the maintenance of the persistent S1P-signaling needed to maintain endothelial barrier function. We review the mechanisms proposed for HDL maintenance of persistent S1P-signaling, the evidence supporting these mechanisms and the remaining fundamental questions.
    Biochimica et biophysica acta. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the discovery in the 1970s that plasma levels of high-density lipoprotein cholesterol (HDL-C) are inversely associated with cardiovascular outcome, it has been postulated that HDL is anti-atherogenic and that increasing HDL-C levels is a promising therapeutic strategy. However, the recent failure of three orally active, HDL-C-raising agents has introduced considerable controversy, prompting the question of whether increasing the cholesterol cargo of HDL in a non-selective manner is an effective pharmacological approach for the translation of its atheroprotective and vasculoprotective activities. The interrelationships between HDL-C concentration, HDL particle number and levels of diverse HDL particle subpopulations of defined composition are complex, as are their relationships with reverse cholesterol transport and other anti-atherogenic functions. Such complexity highlights the incompleteness of our understanding of the biology of HDL particles. This article examines the HDL hypothesis in molecular and mechanistic terms, focusing on features that have been addressed, those that remain to be tested, and potential new targets for future pharmacological interventions.
    Nature reviews. Drug discovery. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: High Density Lipoproteins (HDL) are a target for drug development because of their proposed anti-atherogenic properties. In this review, we will briefly discuss the currently established drugs for increasing HDL-C, namely niacin and fibrates, and some of their limitations. Next, we will focus on novel alternative therapies that are currently being developed for raising HDL-C, such as CETP inhibitors. Finally, we will conclude with a review of novel drugs that are being developed for modulating the function of HDL based on HDL mimetics. Gaps in our knowledge and the challenges that will have to be overcome for these new HDL based therapies will also be discussed.
    Cardiovascular research. 06/2014;

Full-text

Download
2 Downloads
Available from