Monte Carlo commissioning of clinical electron beams using large field measurements

School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland.
Physics in Medicine and Biology (Impact Factor: 2.76). 07/2010; 55(14):4083-105. DOI: 10.1088/0031-9155/55/14/009
Source: PubMed


Monte Carlo simulation can accurately calculate electron fluence at the patient surface and the resultant dose deposition if the initial source electron beam and linear accelerator treatment head geometry parameters are well characterized. A recent approach used large electron fields to extract these simulation parameters. This method took advantage of the absence of lower energy, widely scattered electrons from the applicator resulting in more accurate data. It is important to validate these simulation parameters for clinically relevant fields. In the current study, these simulation parameters are applied to fields collimated by applicators and inserts to perform a comprehensive validation. Measurements were performed on a Siemens Oncor linear accelerator for 6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 21 MeV electron beams and collimators ranging from an open 25 x 25 cm(2) applicator to a 10 x 10 cm(2) applicator with a 1 cm diameter cerrobend insert. Data were collected for inserts placed in four square applicators. Monte Carlo simulations were performed using EGSnrc/BEAMnrc. Source and geometry parameters were obtained from previous measurements and simulations with the maximum field size (40 x 40 cm(2)). The applicators were modelled using manufacturer specifications, confirmed by direct measurements. Cerrobend inserts were modelled based on calliper measurements. Monte Carlo-calculated percentage depth dose and off-axis profiles agreed with measurements to within the least restrictive of 2%/1 mm in most cases. For the largest applicator (25 x 25 cm(2)), and 18 MeV and 21 MeV beams, differences in dose profiles of 3% were observed. Calculated relative output factors were within 2% of those measured with an electron diode for fields 1.5 cm in diameter or larger. The disagreement for 1 cm diameter fields was up to 5%. For open applicators, simulations agreed with parallel plate chamber-measured relative output factors to 1%. This work has validated a recent methodology used to extract data on the electron source and treatment head from large electron fields, resulting in a reduction in the number of unknown parameters in treatment head simulation. Applicator and insert collimated electron fields were accurately simulated without adjusting these parameters. Results demonstrate that commissioning of electron beams based on large electron field measurements is a viable option.

Download full-text


Available from: Mark J Foley, Feb 11, 2014
55 Reads
  • Source
    • "They have been reported to be accurate for electron dose calculation in a heterogeneous phantom (Coleman et al 2005). Previously determined simulation parameters were used to accurately model the Siemens electron beams used in this study with the calculated dose accuracy of 2%/1 mm (O'Shea et al 2010). The dose in the phantom was calculated in voxels of 2 mm width in the transverse plane and 5 mm along the length of the cylinder. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intensity-modulated photon-electron radiation therapy (IMPERT) takes advantage of the high conformity of photon intensity-modulated radiation therapy (IMRT) and low distal dose of electrons to reduce the total energy delivered to healthy tissue, potentially reducing serious side effects including secondary malignancies. This theoretical study was undertaken to elucidate basic principles of IMPERT planning and to help quantify the advantage of IMPERT over photon IMRT. Plans using 6 MV x-rays alone (IMRT) or in combination with 6-21 MeV electron beams (IMPERT) were developed for digital cylindrical water phantoms that included an organ at risk (OAR) situated 0.25 cm below a 5 cm thick planning target volume (PTV), with the top of the PTV positioned up to 4 cm below the surface. Electron beam energy and percentage dose contribution of the electron beam to the total dose were investigated with a flat-bottom PTV. The effect of target shape was investigated with a concave- or convex-bottom PTV positioned at the surface. Air or bone cavities were embedded in the PTV to investigate the effect of tissue inhomogeneity. Dose variations in the electron dose distribution due to tissue inhomogeneity were accurately calculated with Monte Carlo simulation. The preferred electron dose contribution was approximately 50% of the total dose. For all the PTV-OAR scenarios, IMPERT was able to achieve comparable PTV coverage and OAR sparing as IMRT while reducing the energy deposited to the healthy tissue by 6-25%. The IMPERT technique is a clinically viable approach for reducing serious side effects in radiotherapy.
    Physics in Medicine and Biology 09/2011; 56(20):6693-708. DOI:10.1088/0031-9155/56/20/012 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.
    Medical Physics 06/2011; 38(6):3260-9. DOI:10.1118/1.3592640 · 2.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures. The add-on eMLC was modelled using the EGSnrc Monte Carlo code and validated against dose measurements at 6-21 MeV with the eMLC mounted on a Siemens Oncor linear accelerator at 71.6 and 81.6 cm source-to-collimator distances. Measurements and simulations at 8.4-18.4 cm airgaps showed agreement of 2%/2 mm. The eMLC dose profiles and percentage depth dose curves were compared with standard electron applicator parameters. The primary differences were a wider penumbra and up to 4.2% reduction in the build-up dose at 0.5 cm depth, with dose normalized on the central axis. At 90 cm source-to-surface distance (SSD)--relevant to isocentric delivery--the applicator and eMLC penumbrae agreed to 0.3 cm. The eMLC leaves, which were 7 cm thick, contributed up to 6.3% scattered electron dose at the depth of maximum dose for a 10 × 10 cm2 field, with the thick leaves effectively eliminating bremsstrahlung leakage. A Monte Carlo calculated wedge shaped dose distribution generated with all six beam energies matched across the maximum available eMLC field width demonstrated a therapeutic (80% of maximum dose) depth range of 2.1-6.8 cm. Field matching was particularly challenging at lower beam energies (6-12 MeV) due to the wider penumbrae and angular distribution of electron scattering. An eMLC isocentric electron breast boost was planned and compared with the conventional applicator fixed SSD plan, showing similar target coverage and dose to critical structures. The mean dose to the target differed by less than 2%. The low bremsstrahlung dose from the 7 cm thick MLC leaves had the added advantage of reducing the mean dose to the whole heart. Isocentric delivery using an extendable eMLC means that treatment room re-entry and repositioning the patient for SSD set-up is unnecessary. Monte Carlo simulation can accurately calculate the fluence below the eMLC and subsequent patient dose distributions. The eMLC generates similar dose distributions to the standard electron applicator but provides a practical method for more complex electron beam delivery.
    Physics in Medicine and Biology 11/2011; 56(23):7621-38. DOI:10.1088/0031-9155/56/23/018 · 2.76 Impact Factor
Show more