Hierarchically structured titanium foams for tissue scaffold applications.

Department of Materials, Imperial College London, London SW7 2AZ, UK.
Acta biomaterialia (Impact Factor: 5.09). 12/2010; 6(12):4596-604. DOI: 10.1016/j.actbio.2010.06.027
Source: PubMed

ABSTRACT We present a novel route for producing a new class of titanium foams for use in biomedical implant applications. These foams are hierarchically porous, with both the traditional large (>300μm) highly interconnected pores and, uniquely, wall struts also containing micron scale (0.5-5μm) interconnected porosities. The fabrication method consists of first producing a porous oxide precursor via a gel casting method, followed by electrochemical reduction to produce a metallic foam. This method offers the unique ability to tailor the porosity at several scales independently, unlike traditional space-holder techniques. Reducing the pressure during foam setting increased the macro-pore size. The intra-strut pore size (and percentage) can be controlled independently of macro-pore size by altering the ceramic loading and sintering temperature during precursor production. Typical properties for an 80% porous Ti foam were a modulus of ∼1GPa, a yield strength of 8MPa and a permeability of 350 Darcies, all of which are in the range required for biomedical implant applications. We also demonstrate that the micron scale intra-strut porosities can be exploited to allow infiltration of bioactive materials using a novel bioactive silica-polymer composite, resulting in a metal-bioactive silica-polymer composite.

  • [Show abstract] [Hide abstract]
    ABSTRACT: One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.
    Journal of Materials Science Materials in Medicine 07/2013; · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre).
    Materials science & engineering. C, Materials for biological applications. 10/2013; 33(7):4055-62.
  • Source
    International Materials Reviews 01/2014; 59(1):1-43. · 7.48 Impact Factor