Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation.

Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
The international journal of biochemistry & cell biology (Impact Factor: 4.24). 10/2010; 42(10):1672-80. DOI: 10.1016/j.biocel.2010.06.014
Source: PubMed

ABSTRACT Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH-Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous Adenine-Uridine Rich Elements (AREs) from various mRNA 3' untranslated regions (3'UTR) in vitro and in vivo, despite its lack of a canonical RNA binding motif. How GAPDH binds to these AREs is still unknown. Here we discovered that GAPDH binds with high-affinity to the core ARE from Tumor Necrosis Factor-α (TNF-α) mRNA via a two-step binding mechanism. We demonstrate that a mutation at the GAPDH dimer interface impairs formation of the second RNA:GAPDH complex and leads to changes in the RNA structure. We investigated the effect of this interfacial mutation on GAPDH oligomerization by crystallography, small-angle x-ray scattering, nano-ElectroSpray Ionization Mass Spectrometry and Hydrogen-Deuterium Exchange Mass Spectrometry. We show that the mutation does not significantly affect GAPDH tetramerization as previously proposed. Instead, the mutation promotes short-range and long-range dynamic changes in regions located at the dimer and tetramer interface and in the NAD+ binding site. These dynamic changes are localized along the P axis of the GAPDH tetramer, suggesting that this region is important for RNA binding. Based on our results, we propose a model for sequential GAPDH binding to RNA via residues located at the dimer and tetramer interfaces. Copyright © 2014, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 12/2014; 290(7). DOI:10.1074/jbc.M114.618165 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme in glycolysis that catalyzes an important energy-yielding step in carbohydrate metabolism in the cytoplasm. Independent of its glycolytic activity, evident shown that GAPDH playing roles in several non-metabolic processes such as control of gene expression in response to various stimuli. Moreover it has been shown to be regulated at the transcriptional levels in response to various stimuli, including ROS-triggered responses. In this study, we demonstrated that the mRNA expression of a cytoplasm GAPDH (GAPC2) in response to blast infection in rice leave. The result suggested that the expression of this gene may relative to the disease resistance.
    01/2014; 884-885:615-618. DOI:10.4028/
  • [Show abstract] [Hide abstract]
    ABSTRACT: For many animals, survival of severe environmental stress (e.g. to extremes of heat or cold, drought, oxygen limitation, food deprivation) is aided by entry into a hypometabolic state. Strong depression of metabolic rate, often to only 1-20% of normal resting rate, is a core survival strategy of multiple forms of hypometabolism across the animal kingdom, including hibernation, anaerobiosis, aestivation and freeze tolerance. Global biochemical controls are needed to suppress and reprioritize energy use; one such well-studied control is reversible protein phosphorylation. Recently, we turned our attention to the idea that mechanisms previously associated mainly with epigenetic regulation can also contribute to reversible suppression of gene expression in hypometabolic states. Indeed, situations as diverse as mammalian hibernation and turtle anoxia tolerance show coordinated changes in histone post-translational modifications (acetylation, phosphorylation) and activities of histone deacetylases, consistent with their use as mechanisms for suppressing gene expression during hypometabolism. Other potential mechanisms of gene silencing in hypometabolic states include altered expression of miRNAs that can provide post-transcriptional suppression of mRNA translation and the formation of ribonuclear protein bodies in the nucleus and cytoplasm to allow storage of mRNA transcripts until animals rouse themselves again. Furthermore, mechanisms first identified in epigenetic regulation (e.g. protein acetylation) are now proving to apply to many central metabolic enzymes (e.g. lactate dehydrogenase), suggesting a new layer of regulatory control that can contribute to coordinating the depression of metabolic rate. © 2015. Published by The Company of Biologists Ltd.
    Journal of Experimental Biology 01/2015; 218(Pt 1):150-159. DOI:10.1242/jeb.106369 · 3.00 Impact Factor


Available from
Nov 11, 2014