Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation.

Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
The international journal of biochemistry & cell biology (Impact Factor: 4.89). 10/2010; 42(10):1672-80. DOI: 10.1016/j.biocel.2010.06.014
Source: PubMed

ABSTRACT Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH-Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions.
    PLoS ONE 01/2014; 9(2):e89283. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.
    Nature Reviews Molecular Cell Biology 07/2014; 15(8):536-50. · 37.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lactoylglutathione lyase (GLO1), a ubiquitously expressed methylglyoxal (MG) detoxification enzyme, is implicated in the progression of various human malignant diseases. However, the role of GLO1 in the development or progression of murine fibrosarcoma is still unclear. We performed proteomic analysis to identify differences in the intracellular proteins of the regressive tumor cell line QR-32 and the inflammatory cell-promoting progressive tumor cell line QRsP-11 of murine fibrosarcoma by two-dimensional gel electrophoresis combined with mass spectrometry. Seven up-regulated proteins were identified in QRsP-11 compared to QR-32 cells, namely GLO1, annexin A1, adenylate kinase isoenzyme 1, transcription factor BTF3, myosin light polypeptide 6, low molecular weight phosphotyrosine protein phosphatase and nucleoside diphosphate kinase B. Heat shock protein beta-1 (HspB1), a methylglyoxal-adducted protein, is concomitantly over-expressed in QRsP-11 as compared to QR-32 cells. We also found out that GLO1 is translocated into the nucleus to a higher extent in QRsP-11 compared to QR-32 cells, which can be reversed by using a MEK inhibitor (U0126). Moreover, U0126 and GLO1 siRNA can inhibit cell proliferation and migration in QRsP-11 cells. Our data suggests that overexpression and nuclear translocation of GLO1 might be associated with tumor progression in murine fibrosarcoma. This article is protected by copyright. All rights reserved.
    Electrophoresis 02/2014; · 3.26 Impact Factor


Available from
Nov 11, 2014