Article

Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation.

Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
The international journal of biochemistry & cell biology (Impact Factor: 4.89). 10/2010; 42(10):1672-80. DOI: 10.1016/j.biocel.2010.06.014
Source: PubMed

ABSTRACT Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH-Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.

0 Bookmarks
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.
    Nature Reviews Molecular Cell Biology 07/2014; 15(8):536-50. · 36.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme in glycolysis that catalyzes an important energy-yielding step in carbohydrate metabolism in the cytoplasm. Independent of its glycolytic activity, evident shown that GAPDH playing roles in several non-metabolic processes such as control of gene expression in response to various stimuli. Moreover it has been shown to be regulated at the transcriptional levels in response to various stimuli, including ROS-triggered responses. In this study, we demonstrated that the mRNA expression of a cytoplasm GAPDH (GAPC2) in response to blast infection in rice leave. The result suggested that the expression of this gene may relative to the disease resistance.
    Advanced Materials Research. 01/2014; 884-885:615-618.
  • [Show abstract] [Hide abstract]
    ABSTRACT: For many animals, survival of severe environmental stress (e.g. to extremes of heat or cold, drought, oxygen limitation, food deprivation) is aided by entry into a hypometabolic state. Strong depression of metabolic rate, often to only 1-20% of normal resting rate, is a core survival strategy of multiple forms of hypometabolism across the animal kingdom, including hibernation, anaerobiosis, aestivation and freeze tolerance. Global biochemical controls are needed to suppress and reprioritize energy use; one such well-studied control is reversible protein phosphorylation. Recently, we turned our attention to the idea that mechanisms previously associated mainly with epigenetic regulation can also contribute to reversible suppression of gene expression in hypometabolic states. Indeed, situations as diverse as mammalian hibernation and turtle anoxia tolerance show coordinated changes in histone post-translational modifications (acetylation, phosphorylation) and activities of histone deacetylases, consistent with their use as mechanisms for suppressing gene expression during hypometabolism. Other potential mechanisms of gene silencing in hypometabolic states include altered expression of miRNAs that can provide post-transcriptional suppression of mRNA translation and the formation of ribonuclear protein bodies in the nucleus and cytoplasm to allow storage of mRNA transcripts until animals rouse themselves again. Furthermore, mechanisms first identified in epigenetic regulation (e.g. protein acetylation) are now proving to apply to many central metabolic enzymes (e.g. lactate dehydrogenase), suggesting a new layer of regulatory control that can contribute to coordinating the depression of metabolic rate. © 2015. Published by The Company of Biologists Ltd.
    Journal of Experimental Biology 01/2015; 218(Pt 1):150-159. · 3.00 Impact Factor

Full-text

Download
9 Downloads
Available from
Nov 11, 2014