Article

Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats.

State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing, China.
European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences (Impact Factor: 2.61). 10/2010; 41(2):232-43. DOI: 10.1016/j.ejps.2010.06.008
Source: PubMed

ABSTRACT The restriction of drug transporting across the blood-brain barrier (BBB) and the limit of drug penetrating into the tumor tissue remain the major obstacles for brain tumor chemotherapy. In the present study, we developed a functionalized liposomal nanoconstruct, epirubicin liposomes modified with tamoxifen (TAM) and transferrin (TF), for transporting drug across the BBB and afterwards targeting the brain glioma.
Evaluations were performed on the murine C6 glioma cells, the C6 glioma spheroids, the BBB model in vitro and the brain glioma-bearing rats.
When compared with controls, epirubicin liposomes modified with TAM and TF showed the strongest inhibitory effect to C6 glioma cells or glioma spheroids in vitro, significant transport ability across the BBB model in vitro, an evident effect of targeting the brain tumor cells in vitro, and an extended median survival time in the brain glioma-bearing rats.
Epirubicin liposomes modified with TAM and TF significantly improve the therapeutic efficacy of brain glioma in vitro and in animals, hence providing a new strategy for brain tumor chemotherapy.

0 Bookmarks
 · 
165 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liposomes act as efficient drug carriers. Recently, epirubicin (EPI) formulation was developed using a novel EDTA ion gradient method for drug encapsulation. This formulation displayed very good stability and drug retention in vitro in a two-year long-term stability experiment. The cryo-TEM images show drug precipitate structures different than ones formed with ammonium sulfate method, which is usually used to encapsulate anthracyclines. Its pharmacokinetic properties and its efficacy in the human breast MDA-MB-231 cancer xenograft model were also determined. The liposomal EPI formulation is eliminated slowly with an AUC of 7.6487, while the free drug has an AUC of only 0.0097. The formulation also had a much higher overall antitumor efficacy than the free drug.
    PLoS ONE 01/2014; 9(3):e91487. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Epirubicin (EPI), an anthracycline derivative, is one of the main line treatments for HCC. However, serious side effects including cardiomyopathy and congestive heart failure limit its long term administration. Our main goal is to develop a delivery strategy that ensures improved efficacy of the chemotherapeutic agent together with reduced cardiotoxicity. In this context, EPI was loaded in chitosan-PLGA nanoparticles linked with asialofetuin (EPI-NPs) selectively targeting hepatocytes. In an attempt to reduce cardiotoxicity, targeted EPI-NPs were coadministered with tocotrienols. EPI-NPs significantly enhanced the antiproliferative effect compared to free EPI as studied on Hep G2 cell line. Nanoencapsulated EPI injected in HCC mouse model revealed higher p53-mediated apoptosis and reduced angiogenesis in the tumor. Combined therapy of EPI-NPs with tocotrienols further enhanced apoptosis and reduced VEGF level in a dose dependent manner. Assessment of cardiotoxicity indicated that EPI-NPs diminished the high level of proinflammatory cytokine tumor necrosis factor-α (TNF-α) as well as oxidative stress-induced cardiotoxicity as manifested by reduced level of lipid peroxidation products (TBARS) and nitric oxide (NO). EPI-NPs additionally restored the diminished level of superoxide dismutase (SOD) and reduced glutathione (GSH) in the heart. Interestingly, tocotrienols provided both antitumour activity and higher protection against oxidative stress and inflammation induced by EPI in the heart. This hepatocyte-targeted biodegradable nanoparticle / tocotrienol combined therapy represents intriguing therapeutic strategy for EPI providing not only superior efficacy but also higher safety levels.
    European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 05/2014; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most anticancer drugs are not able to cross the blood-brain barrier (BBB) effectively while surgery and radiation therapy cannot eradicate brain glioma cells and glioma stem cells (GSCs), hence resulting in poor prognosis with high recurrence rates. In the present study, a kind of multifunctional targeting daunorubicin plus quinacrine liposomes was developed for treating brain glioma and GSCs. Evaluations were performed on in-vitro BBB model, murine glioma cells, GSCs, and GSCs bearing mice. Results showed that the multifunctional targeting daunorubicin plus quinacrine liposomes exhibited evident capabilities in crossing the BBB, in killing glioma cells and GSCs and in diminishing brain glioma in mice. Action mechanism studies indicated that the enhanced efficacy of the multifunctional targeting drugs-loaded liposomes could be due to the following aspects: evading the rapid elimination from blood circulation; crossing the BBB effectively; improving drug uptake by glioma cells and GSCs; down-regulating the overexpressed ABC transporters; inducing apoptosis of GSCs via up-regulating apoptotic receptor/ligand (Fas/Fasl), activating apoptotic enzymes (caspases 8, 9 and 3), activating pro-apoptotic proteins (Bax and Bok), activating tumor suppressor protein (P53) and suppressing anti-apoptotic proteins (Bcl-2 and Mcl-1). In conclusion, the multifunctional targeting daunorubicin plus quinacrine liposomes could be used as a potential therapy for treating brain glioma and GSCs.
    Oncotarget 08/2014; 5(15):6497-6511. · 6.64 Impact Factor