Gene expression profiling for food safety assessment: Examples in potato and maize

RIKILT Institute of Food Safety, PO Box 230, 6700 AE Wageningen, The Netherlands.
Regulatory Toxicology and Pharmacology (Impact Factor: 2.13). 12/2010; 58(3 Suppl):S21-5. DOI: 10.1016/j.yrtph.2010.06.012
Source: PubMed

ABSTRACT Since the mid 1990s, microarray analysis has become one of the few tools that can analyze the entire contents of a cell regarding a specific information type. Especially since the development of whole genome microarrays the technique can be considered truly holistic. Most DNA based microarrays are used for the analysis of the total of messenger RNAs (transcriptome) and provide a snap-shot of what's going on in a cell population at the time of sampling. Within the last few years also full genome plant microarrays have become available for several crop species. With these it has been shown that several growing conditions can be separated based on their transcriptome pattern, such as location, year of harvest and agricultural input system, but also different cultivars of the same crop species, including genetically modified ones. A database comprising expression levels of the transcriptome in many different circumstances with a history of safe use would be a good comparator for evaluation of new agricultural practices or cultivars, genetically modified or otherwise obtained. New techniques as next generation sequencing may overcome issues on throughput time and cost, standard operation procedures and array design for individual crops.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The insect resistant maize YieldGard MON810 was studied to assess the extent to which introduction of a transgene may putatively alter the expression of endogenous genes by comparison of various GM lines vs. their non-transgenic counterparts. To assess the extent to which introduction of a transgene may putatively alter the expression of endogenous genes, GM lines of the insect resistant maize YieldGard MON810 were compared with non-transgenic counterparts. For a more in-depth study, high-throughput deep sequencing together with microarrays were used to compare the transcriptomes of immature embryos of the MON810 variety DKC6575, with a cryIA(b) transgene, and its near-isogenic variety Tietar, grown under controlled environmental conditions. This technique also allows characterisation of the transgenic mRNAs produced. 3'UTR-anchored mRNA-seq produced 1,802,571 sequences from DKC6575 and 1,170,973 from Tietar, which mapped to 14,712 and 14,854 unigenes, respectively. Up to 32 reads from the transgenic embryos matched to the synthetic cry1A(b) sequence, similar to medium-abundant mRNAs. Gene expression analysis, using the R-bioconductor packages EdgeR and DEseq, revealed 140 differentially expressed genes mainly involved in carbohydrate metabolism, protein metabolism and chromatin organisation. Comparison of the expression of 30 selected genes in two additional MON810 and near-isogenic variety pairs showed that most of them were differentially expressed in the three pairs of varieties analysed. Analysis of functional annotation and the precise moment of expression of the differentially expressed genes and physiological data obtained suggest a slight but significant delay in seed and plant maturation of MON810 plants. However, these transcriptomic changes were not associated to undesirable changes in the global phenotype or plant behaviour. Moreover, while most expression changes in MON810 immature embryos were maintained in other transgenic varieties, some gene expression was found to be modulated by the genetic background in which the transgene was introduced through conventional breeding programs.
    PLoS ONE 06/2014; 9(6):e100895. DOI:10.1371/journal.pone.0100895 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Profiling techniques such as microarrays, proteomics, and metabolomics are used widely to assess the overall effects of genetic background, environmental stimuli, growth stage, or transgene expression in plants. To assess the potential regulatory use of these techniques in agricultural biotechnology, we carried out microarray and metabolomic studies of three different tissues from eleven conventional maize varieties. We measured technical variations for both microarrays and metabolomics, compared results from individual plants and corresponding pooled samples, and documented variations detected among different varieties with individual plants or pooled samples. Both microarray and metabolomic technologies are reproducible, and can be used to detect plant-to-plant and variety-to-variety differences. A pooling strategy lowered sample variations for both microarray and metabolomics, while capturing variety-to-variety variation. However, unknown genomic sequences differing between maize varieties might hinder the application of microarrays. High throughput metabolomics could be useful as a tool for the characterization of transgenic crops. However, researchers will have to take into consideration the impact on the detection and quantitation of a wide range of metabolites on experimental design as well as validation and interpretation of results.
    Journal of Agricultural and Food Chemistry 02/2014; 62(13). DOI:10.1021/jf405652j · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Demand for organic foods is partially driven by consumers' perceptions that they are more nutritious. However, scientific opinion is divided on whether there are significant nutritional differences between organic and non-organic foods, and two recent reviews have concluded that there are no differences. In the present study, we carried out meta-analyses based on 343 peer-reviewed publications that indicate statistically significant and meaningful differences in composition between organic and non-organic crops/crop-based foods. Most importantly, the concentrations of a range of antioxidants such as polyphenolics were found to be substantially higher in organic crops/crop-based foods, with those of phenolic acids, flavanones, stilbenes, flavones, flavonols and anthocyanins being an estimated 19 (95 % CI 5, 33) %, 69 (95 % CI 13, 125) %, 28 (95 % CI 12, 44) %, 26 (95 % CI 3, 48) %, 50 (95 % CI 28, 72) % and 51 (95 % CI 17, 86) % higher, respectively. Many of these compounds have previously been linked to a reduced risk of chronic diseases, including CVD and neurodegenerative diseases and certain cancers, in dietary intervention and epidemiological studies. Additionally, the frequency of occurrence of pesticide residues was found to be four times higher in conventional crops, which also contained significantly higher concentrations of the toxic metal Cd. Significant differences were also detected for some other (e.g. minerals and vitamins) compounds. There is evidence that higher antioxidant concentrations and lower Cd concentrations are linked to specific agronomic practices (e.g. non-use of mineral N and P fertilisers, respectively) prescribed in organic farming systems. In conclusion, organic crops, on average, have higher concentrations of antioxidants, lower concentrations of Cd and a lower incidence of pesticide residues than the non-organic comparators across regions and production seasons.
    British Journal Of Nutrition 06/2014; DOI:10.1017/S0007114514001366 · 3.34 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014