Article

Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
Toxicology and Applied Pharmacology (Impact Factor: 3.63). 09/2010; 247(2):83-90. DOI: 10.1016/j.taap.2010.06.011
Source: PubMed

ABSTRACT Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17beta-estradiol (E(2)). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E(2)-induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E(2) pellets, co-exposure to quercetin did not protect rats from E(2)-induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin+E(2)-treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin+E(2) group relative to those in the E(2) group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F(2alpha) (8-iso-PGF(2alpha)) levels as a marker of oxidant stress showed that quercetin did not decrease E(2)-induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E(2)-induced oxidant stress and may exacerbate breast carcinogenesis in E(2)-treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E(2) and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E(2) and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E(2)-induced breast tumors in female ACI rats.

0 Followers
 · 
142 Views
  • Source
    • "In present study, we have demonstrated that Tam treatment did not completely abrogate E2-induced mammary tumors in female ACI rats. Female ACI rat model is an established animal model of hormonal carcinogenesis [7], [8], [9], [26], [29], [30], [31]. It shares many features of human breast cancer such as genomic instability, increased oxidant stress, DNA damage etc. [26], [27], [28], [32], [33], [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F(2α) (8-isoPGF(2α)), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden.
    PLoS ONE 09/2011; 6(9):e25125. DOI:10.1371/journal.pone.0025125 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quercetin is one of the naturally occurring dietary flavonol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time- and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.
    Acta Biochimica et Biophysica Sinica 01/2011; 43(1):30-7. DOI:10.1093/abbs/gmq107 · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel flavonoid-polysaccharide conjugate was synthesized by free radical grafting of quercetin on starch. The covalent insertion of quercetin in the polymeric chain was confirmed by FT-IR, DSC and fluorescence analyses, while an estimation of the amount of quercetin bound per g of polymer was obtained by the Folin-Ciocalteu assay. The conjugate shows improved UV stability and retains the antioxidant properties of free quercetin, such as scavenging activity towards free radicals (DPPH and peroxynitrite); inhibition of the free radical formation (peroxidation of linoleic acid) and total antioxidant activity. The conjugate also prevented drug degradation and shows potential health functionality in the treatment of Alzheimer disease, diabetes and as skin-whitening agent.
    Pharmaceutical Development and Technology 01/2011; 17(4):466-76. DOI:10.3109/10837450.2010.546413 · 1.34 Impact Factor
Show more