A liquid chromatography-tandem mass spectrometry method for measurement of N-modified phosphatidylethanolamines

Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
Analytical Biochemistry (Impact Factor: 2.31). 10/2010; 405(2):236-45. DOI: 10.1016/j.ab.2010.06.027
Source: PubMed

ABSTRACT N-Acyl phosphatidylethanolamines (NAPEs) are synthesised in response to stress in a variety of organisms from bacteria to humans. More recently, nonenzymatic modification of the ethanolamine headgroup of phosphatidylethanolamine (PE) by various aldehydes, including levuglandins/isoketals (which are gamma-ketoaldehydes [gammaKAs] derived from arachidonic acid), has also been demonstrated. The levels of these various N-modified PEs formed during stress and their biological significance remain to be fully characterized. Such studies require an accurate, facile, and cost-effective method for quantifying N-modified PEs. Previously, NAPE and some of the nonenzymatically N-modified PE species have been quantified by mass spectrometry after hydrolysis to their constituent N-acylethanolamine by enzymatic hydrolysis, most typically with Streptomyces chromofuscus phospholipase D. However, enzymatic hydrolysis is not cost-effective for routine analysis of a large number of samples, and hydrolytic efficiency may vary for different N-modified PEs, making quantitation more difficult. Therefore, we sought a robust and inexpensive chemical hydrolysis approach. Methylamine (CH(3)NH(2))-mediated deacylation has previously been used in headgroup analysis of phosphatidylinositol phosphates. Therefore, we developed an accurate assay for NAPEs and gammaKA-PEs using CH(3)NH(2)-mediated deacylation and quantitation of the resulting glycerophospho-N-modified ethanolamines by liquid chromatography-tandem mass spectrometry.

  • [Show abstract] [Hide abstract]
    ABSTRACT: N-acylphosphatidylethanolamine (NAPE) and N-acylplasmenylethanolamine (pNAPE) are widely found phospholipids, and they are precursors for N-acylethanolamines, a group of compounds that has a variety of biological effects and encompasses the endocannabinoid anandamide. NAPE and pNAPE are synthesized by the transfer of an acyl chain from a donor phospholipid, to the amine in phosphatidylethanolamine or plasmenylethanolamine. NAPE has been reported to stabilize model membranes during brain ischemia, and to modulate food intake in rodents, thus having bioactive effects besides its precursor role. This paper reviews the metabolism, occurrence and assay of NAPE and pNAPE, and discusses the putative biological functions in mammals of these phospholipids. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 03/2013; 1831(3):652–662. DOI:10.1016/j.bbalip.2012.08.019 · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipid aldehydes including isolevuglandins (IsoLG) and 4-hydroxynonenal (4-HNE) modify phosphatidylethanolamine (PE) to form proinflammatory and cytotoxic adducts. Therefore, cells may have evolved mechanisms to degrade and prevent accumulation of these potentially harmful compounds. To test if cells could degrade IsoLG-PE, we generated IsoLG-PE in HEK293 and HUVEC cells and measured its stability over time. We found that IsoLG-PE levels decreased more than 75% after 6h, suggesting that IsoLG-PE was indeed degraded. Because NAPE-hydrolyzing phospholipase D (NAPE-PLD) has been described as a key enzyme in the hydrolysis of NAPE (N-acyl phosphatidylethanoamine) and both NAPE and IsoLG-PE have large aliphatic headgroups, we considered the possibility that this enzyme might also hydrolyze IsoLG-PE. We found that knockdown of NAPE-PLD expression using siRNA significantly increased the persistence of IsoLG-PE in HEK293 cells. IsoLG-PE competed with NAPE for hydrolysis by recombinant mouse NAPE-PLD, with the catalytic efficiency (Vmax/Km) for hydrolysis of IsoLG-PE being 30% that for hydrolysis of NAPE. LC-MS/MS analysis confirmed that recombinant NAPE-PLD hydrolyzed IsoLG-PE to IsoLG-ethanolamine (IsoLG-Etn). These results demonstrate that NAPE-PLD contributes to the degradation of IsoLG-PE and suggest that a major physiological role of NAPE-PLD may be to degrade aldehyde-modified PE, thereby preventing the accumulation of these harmful compounds.
    The Journal of Lipid Research 09/2013; DOI:10.1194/jlr.M042556 · 4.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.
    Journal of Clinical Investigation 06/2014; 124(8). DOI:10.1172/JCI72517 · 13.77 Impact Factor


Available from