Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom.

Optical Diagnostic Devices Laboratory, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993, USA.
Optics Letters (Impact Factor: 3.39). 07/2010; 35(13):2269-71. DOI: 10.1364/OL.35.002269
Source: PubMed

ABSTRACT We present a novel (to our knowledge) approach for measurement of the three-dimensional point spread function (PSF) of optical coherence tomography (OCT) systems using a nanoparticle-embedded phantom (NEP), toward development of standardized test methods for biophotonic imaging. The NEP comprises highly reflective plasmonic nanoparticles, homogeneously distributed in a transparent silicone matrix. OCT image volumes were analyzed to characterize PSFs in axial and lateral directions at a variety of locations in the NEP. Results indicate submicrometer agreement with conventional approaches to measure dimensions of the PSF. The NEP offers a robust approach for validating and comparing imaging performance of OCT devices.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity.
    Biomedical Optics Express 07/2014; 5(7). · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resolution is an important figure of merit for imaging systems. We designed, fabricated and tested an optical phantom consisting of a block of SU-8 with bars etched into its surface. This phantom mimics the simplicity of the 1951 Air Force test chart but can characterize both the axial and lateral resolution of optical coherence tomography systems. The phantom was successfully used to find the axial and lateral resolutions of multiple OCT systems.
    Proceedings of SPIE - The International Society for Optical Engineering 02/2013; · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.
    Proceedings of SPIE - The International Society for Optical Engineering 05/2012; · 0.20 Impact Factor