Article

Phylogeographic separation of marine and soil myxobacteria at high levels of classification.

Shandong University, Jinan, PR China.
The ISME Journal (Impact Factor: 9.27). 12/2010; 4(12):1520-30. DOI: 10.1038/ismej.2010.84
Source: PubMed

ABSTRACT Microorganisms are globally dispersed and are able to proliferate in any habitat that supports their lifestyles, which, however, has not yet been explored in any specific microbial taxon. The social myxobacteria are considered typical soil bacteria because they have been identified in various terrestrial samples, a few in coastal areas, but none in other oceanic environments. To explore the prevalence of marine myxobacteria and to investigate their phylogenetic relationships with their terrestrial counterparts, we established myxobacteria-enriched libraries of 16S rRNA gene sequences from four deep-sea sediments collected at depths from 853 to 4675 m and a hydrothermal vent at a depth of 204 m. In all, 68 different myxobacteria-related sequences were identified from randomly sequenced clones of the libraries of different samples. These myxobacterial sequences were diverse but phylogenetically similar at different locations and depths. However, they were separated from terrestrial myxobacteria at high levels of classification. This discovery indicates that the marine myxobacteria are phylogeographically separated from their terrestrial relatives, likely because of geographic separation and environment selection.

Download full-text

Full-text

Available from: Chiaki Kato, Dec 22, 2014
0 Followers
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent discoveries have found the myxobacteria to be much more diverse - both across and within species - than previously known, from global to micrometer spatial scales. Evolutionary analysis of such extant diversity promises to reveal much about how myxobacteria have adapted to natural ecological habitats in the past and continue to evolve in the present, particularly with regard to their intriguing social phenotypes. Experimental populations propagated under defined laboratory conditions undergo very rapid evolution at cooperative traits in a manner that radically changes their social composition. Analysis of such experimentally evolved populations allows detailed characterization of social evolutionary dynamics in real time. Moreover, traditional genetic tools and new genome sequencing technologies together allow deep investigation of the molecular basis of adaptation by experimental populations to known ecological habitats, which in turn can lead to new discoveries regarding the molecular mechanisms governing social behavior.
    Myxobacteria: Genomics, Cellular and Molecular Biology, Edited by Zhaomin Yang, Penelope I. Higgs, 02/2014: chapter Whence Comes Social Diversity? Ecological and Evolutionary Analysis of the Myxobacteria: pages 1-28; Caister Academic Press., ISBN: 978-1908230348
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.The ISME Journal advance online publication, 12 September 2013; doi:10.1038/ismej.2013.144.
    The ISME Journal 09/2013; DOI:10.1038/ismej.2013.144 · 9.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To better understand the bacterial processes in river sediments, it is necessary to investigate the depth-related bacterial communities in the whole sediment profile. Sediment samples were collected to a depth of 25cm from the Pearl River. Bacterial abundance, activity, cell-specific respiration rate, and diversity were measured, respectively, by 4′, 6-diamidino-2-phenylindole direct count, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining, electron transport system by CTC reduction, and denaturing gradient gel electrophoresis analysis of 16S rRNA amplification fragments. Results showed that the bacterial metabolism activities decreased with the sediment depth. The total bacterial abundance was highest in the surface sediment with 65.1×107 cells g−1, and decreased to 11.1×107 cells g−1 below 20cm in the sample location that suffered from heavy sewage inputs. The active bacteria accounted for 7.50–46.7% of the total bacterial number and decreased with the sediment depth. Electron transport system by the CTC reduction showed that bacterial respiration rate declined from 1.093μmol CTC-formazan h−1 g−1 in the surface sediment to a half in the bottom sediment, while the cell-specific respiration increased significantly with the depth from 3.56 to 93.75 fmol CTC-formazan cell−1. The bacterial diversity also changed with the depth. Beta-Proteobacteria were the dominant species in the surface sediment, whereas Delta-Proteobacteria were the main species below 10cm. Results of canonical correspondence analysis (CCA) indicated that the distribution of bacteria was affected by the combined effect of various dissolved inorganic matter, while the respiration rate was independent of the nutrient conditions. The specific bacterial distribution contributed to not only the nutrient cycle but also enhanced pollutant decomposition in sediment of the Pearl River. The results showed that some specific bacterial species had a strong activity in the deeper layers. Therefore, the metabolic functions of the deeper bacterial species should not be neglected. KeywordsRiver sediment–Bacterial abundance and activity–Microbial diversity–Dissolved inorganic nitrogen
    World Journal of Microbiology and Biotechnology 11/2011; 27(11):2655-2664. DOI:10.1007/s11274-011-0739-x · 1.35 Impact Factor