MAPKAP kinase blocks Tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment

Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London W6 8LH, United Kingdom.
Journal of Biological Chemistry (Impact Factor: 4.57). 09/2010; 285(36):27590-600. DOI: 10.1074/jbc.M110.136473
Source: PubMed


Tristetraprolin (TTP) directs its target AU-rich element (ARE)-containing mRNAs for degradation by promoting removal of the poly(A) tail. The p38 MAPK pathway regulates mRNA stability via the downstream kinase MAPK-activated protein kinase 2 (MAPKAP kinase 2 or MK2), which phosphorylates and prevents the mRNA-destabilizing function of TTP. We show that deadenylation of endogenous ARE-containing tumor necrosis factor mRNA is inhibited by p38 MAPK. To investigate whether phosphorylation of TTP by MK2 regulates TTP-directed deadenylation of ARE-containing mRNAs, we used a cell-free assay that reconstitutes the mechanism in vitro. We find that phosphorylation of Ser-52 and Ser-178 of TTP by MK2 results in inhibition of TTP-directed deadenylation of ARE-containing RNA. The use of 14-3-3 protein antagonists showed that regulation of TTP-directed deadenylation by MK2 is independent of 14-3-3 binding to TTP. To investigate the mechanism whereby TTP promotes deadenylation, it was necessary to identify the deadenylases involved. The carbon catabolite repressor protein (CCR)4.CCR4-associated factor (CAF)1 complex was identified as the major source of deadenylase activity in HeLa cells responsible for TTP-directed deadenylation. CAF1a and CAF1b were found to interact with TTP in an RNA-independent fashion. We find that MK2 phosphorylation reduces the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase in a mechanism that does not involve sequestration of TTP by 14-3-3. Cyclooxygenase-2 mRNA stability is increased in CAF1-depleted cells in which it is no longer p38 MAPK/MK2-regulated.

23 Reads
  • Source
    • "As an example of PUF-based RBP engineering, we fused the PUM-HD domain to TTP, a well-studied post-transcriptional regulator. TTP binds to AU-rich elements (AREs) in the 3′-untranslated region (UTR) of the target genes and promotes mRNA degradation by recruiting a deadenylase complex [30]. TTP is also known to promote ARE-dependent gene knockdown via translation repression through cooperation with a general translation inhibitor RCK/P54 [31], though the details of this mechanism remain unknown. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to their modular repeat structure, Pumilio/fem-3 mRNA binding factor (PUF) proteins are promising candidates for designer RNA-binding protein (RBP) engineering. To further facilitate the application of the PUF domain for the sequence-specific RBP engineering, a rapid cloning approach is desirable that would allow efficient introduction of multiple key amino acid mutations in the protein. Here, we report the implementation of the Golden Gate cloning method for an efficient one-step assembly of a designer PUF domain for RNA specificity engineering. We created a repeat module library that is potentially capable of generating a PUF domain with any desired specificity. PUF domains with multiple repeat modifications for the recognition of altered RNA targets were obtained in a one-step assembly reaction, which was found to be highly efficient. The new PUF variants exhibited high in vitro binding efficiencies to cognate RNA sequences, corroborating the applicability of the modular approach for PUF engineering. To demonstrate the application of the PUF domain assembly method for RBP engineering, we fused the PUF domain to a post-transcriptional regulator and observed a sequence-specific reporter and endogenous gene repression in human cell lines. The Golden Gate based cloning approach thus should allow greater flexibility and speed in implementing the PUF protein scaffold for engineering designer RBPs, and facilitate its use as a tool in basic and applied biology and medicine.
    Journal of Biological Engineering 03/2014; 8(1):7. DOI:10.1186/1754-1611-8-7 · 2.48 Impact Factor
  • Source
    • "RNA was isolated using RNeasy kit (Qiagen) and cDNA was synthesized using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). mRNAs were quantified by qRT-PCR using Taqman Gene expression assays and data analysed by relative quantitation (with standard curves) with normalisation to GAPDH mRNA as previously described [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27(kip1) and p21(waf1). The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation.
    PLoS ONE 10/2013; 8(10):e77383. DOI:10.1371/journal.pone.0077383 · 3.23 Impact Factor
  • Source
    • "MK2-mediated phosphorylation of TTP does not affect its binding to target mRNA, but inhibits the ability of TTP to recruit deadenylases to target mRNA for their degradation in cytoplasm (Carballo et al., 2001; Stoecklin et al., 2004; Clement et al., 2011). Further investigation of this demonstrated that carbon catabolite repressor protein 4-associated factor-1 (CAF1) was the major source of deadenylase activity responsible for TTP-directed deadenylation (Marchese et al., 2010). MK2 phosphorylation reduced the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase independently of 14-3-3. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the mechanisms by which signal transduction pathways mediate changes in RNA abundance requires the examination of the fate of RNA from its transcription to its degradation. Evidence suggests that RNA abundance is partly regulated by post-transcriptional mechanisms affecting RNA decay and this in turn is modulated by some of the same signaling pathways that control transcription. Furthermore, the translation of mRNA is a key regulatory step that is influenced by signal transduction. These processes are regulated, in part, by RNA-binding proteins (RBPs) which bind to sequence-specific RNA elements. The function of RBPs is controlled and co-ordinated by phosphorylation. Based on the current literature we hypothesize that RBPs may be a point of convergence for the activity of different kinases such as phosphoinositide-3-kinase and mitogen-activated protein kinase which regulate RBP localization and function.
    Frontiers in Immunology 12/2012; 3:398. DOI:10.3389/fimmu.2012.00398
Show more