Nasal inflammation in sleep apnoea patients using CPAP and effect of heated humidification

Medical School of Athens University, Center of Sleep Disorders, Evangelismos Hospital, 45-47 Ipsilandou Str, GR 106 75, Athens, Greece.
European Respiratory Journal (Impact Factor: 7.64). 03/2011; 37(3):587-94. DOI: 10.1183/09031936.00036910
Source: PubMed


Nasal continuous positive airway pressure (CPAP) can cause undesirable nasal symptoms, such as congestion to obstructive sleep apnoea (OSA) patients, whose symptoms can be attenuated by the addition of heated humidification. However, neither the nature of nasal symptoms nor the effect of heated humidification on nasal pathophysiology and pathology are convincingly known. 20 patients with OSA on nasal CPAP who exhibited symptomatic nasal obstruction were randomised to receive either 3 weeks of CPAP treatment with heated humidification or 3 weeks of CPAP treatment with sham-heated humidification, followed by 3 weeks of the opposite treatment, respectively. Nasal symptom score, nasal resistance, nasal lavage interleukin-6, interleukin-12 and tumour necrosis factor-α and nasal mucosa histopathology were assessed at baseline and after each treatment arm. Heated humidification in comparison with sham-heated humidification was associated with decrease in nasal symptomatology, resistance and lavage cytokines, and attenuation of inflammatory cell infiltration and fibrosis of the nasal mucosa. In conclusion, nasal obstruction of OSA patients on CPAP treatment is inflammatory in origin and the addition of heated humidification decreases nasal resistance and mucosal inflammation.

3 Reads
  • Source
    • "Moreover, 33% of the articles did not identify a statistically significant association between rhinitis and sleep-breathing disorders in children.10 This lack of evidence contrasts with the prevalent notion that OSA is associated with nasal inflammatory changes.5,6 In support of the link between nasal inflammation and OSA in children, our data identified a high prevalence of rhinitis in children with overnight PSG-confirmed OSA (43%), which is similar to what has been previously described in adult studies.24 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhinitis and obstructive sleep apnea (OSA) often coexist during childhood. To delineate this clinical association, we examined OSA severity and polysomnogram (PSG) features in children with rhinitis and OSA. Given that rapid-eye-movement (REM) sleep is characterized by nasal congestion, we hypothesized that children with rhinitis have more REM-related breathing abnormalities. We conducted a retrospective cross-sectional analysis of 145 children with PSG-diagnosed OSA. Outcomes included PSG parameters and obstructive apnea-hypopnea index (OAHI) during REM and non-REM. Linear multivariable models examined the joint effect of rhinitis and OSA parameters with control for potential confounders. Rhinitis was present in 43% of children with OSA (n = 63) but overall OAHI severity was unaffected by the presence of rhinitis. In contrast, OAHI during REM sleep in children with moderate-severe OSA was significantly increased in subjects with rhinitis and OSA (44.1/hr; SE = 6.4) compared with those with OSA alone (28.2/hr; SE = 3.8). Rhinitis is highly prevalent in children with OSA. Although OSA is not more severe in children with rhinitis, they do have a distinct OSA phenotype characterized by more REM-related OSA. Further research is needed to delineate the link between REM-sleep and the physiology of the nose during health and disease.
    American Journal of Rhinology and Allergy 03/2014; 28(1):56-61. DOI:10.2500/ajra.2014.28.3994 · 1.81 Impact Factor
  • Source
    • "These inflammatory mediators increase superficial mucosal blood flow, which leads to engorgement of deeper capacitance vessels that cause increased nasal resistance to airflow [11]. With nasal congestion being frequently cited as the main cause of poor adherence to CPAP therapy [6], mucosal drying is commonly relieved through the use of supplementary humidification in an attempt to improve treatment compliance. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Continuous positive air pressure (CPAP) users frequently report troublesome symptoms of airway dryness and nasal congestion. Clinical investigations have demonstrated that supplementary humidification reduces these symptoms but the reason for their occurrence remains unexplained. Investigations using human computational air-conditioning models are unable to reproduce or quantify the apparent airway drying experienced during CPAP therapy. The purpose of this study was to determine whether augmented air pressures change overall mucosal airway surface liquid (ASL) water supply and, if so, the extent of this effect. In an original in vitro experimental set up, maximal ASL supply was determined in whole bovine trachea when exposed to simulated tidal breathing stresses over a range of air pressures. At ambient pressure, the maximal supply of ASL was found to compare well to previously published data (31.2 μl/ CPAP pressures from 5 cm H2O above ambient were found to reduce ASL supply by 22%. Statistical analysis (n = 8) showed a significant difference existed between the ambient and CPAP results (p < 0.0001), and that there was no significant variation between all pressurized results (p = 0.716). These findings provide preliminary data that ASL supply is reduced by CPAP therapy which may explain the airway drying symptoms associated with this therapy.
    BioMedical Engineering OnLine 02/2014; 13(1):12. DOI:10.1186/1475-925X-13-12 · 1.43 Impact Factor
  • Source
    • "HH reduces nasal symptoms and nasal resistance, consequently attenuating inflammatory cell infiltration and fibrosis of the nasal mucosa [35,36]. Therefore, the American Academy of Sleep Medicine has recommended the use of HH to improve CPAP compliance and adherence as a standard of practice [37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inadequate gas conditioning during non-invasive ventilation (NIV) can impair the anatomy and function of nasal mucosa. The resulting symptoms may have a negative effect on patients' adherence to ventilatory treatment, especially for chronic use. Several parameters, mostly technical aspects of NIV, contribute to inefficient gas conditioning. Factors affecting airway humidity during NIV include inspiratory flow, inspiratory oxygen fraction, leaks, type of ventilator, interface used to deliver NIV, temperature and pressure of inhaled gas, and type of humidifier. The correct application of a humidification system may avoid the effects of NIV-induced drying of the airway. This brief review analyses the consequences of airway dryness in patients receiving NIV and the technical tools necessary to guarantee adequate gas conditioning during ventilatory treatment. Open questions remain about the timing of gas conditioning for acute or chronic settings, the choice and type of humidification device, the interaction between the humidifier and the underlying disease, and the effects of individual humidification systems on delivered humidity.
    Critical care (London, England) 02/2012; 16(1):203. DOI:10.1186/cc10534 · 4.48 Impact Factor
Show more