Chronic myeloid leukemia: mechanisms of blastic transformation.

Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 41230, USA.
The Journal of clinical investigation (Impact Factor: 15.39). 07/2010; 120(7):2254-64. DOI: 10.1172/JCI41246
Source: PubMed

ABSTRACT The BCR-ABL1 oncoprotein transforms pluripotent HSCs and initiates chronic myeloid leukemia (CML). Patients with early phase (also known as chronic phase [CP]) disease usually respond to treatment with ABL tyrosine kinase inhibitors (TKIs), although some patients who respond initially later become resistant. In most patients, TKIs reduce the leukemia cell load substantially, but the cells from which the leukemia cells are derived during CP (so-called leukemia stem cells [LSCs]) are intrinsically insensitive to TKIs and survive long term. LSCs or their progeny can acquire additional genetic and/or epigenetic changes that cause the leukemia to transform from CP to a more advanced phase, which has been subclassified as either accelerated phase or blastic phase disease. The latter responds poorly to treatment and is usually fatal. Here, we discuss what is known about the molecular mechanisms leading to blastic transformation of CML and propose some novel therapeutic approaches.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The introduction of protein tyrosine kinase inhibitors (TKIs) in 1998 transformed the management of chronic myeloid leukemia (CML), leading to significantly reduced mortality and improved 5 year survival rates. However, the CML community is faced with several clinical issues that need to be addressed. Ten to 15% of CML patients are diagnosed in advanced phase, and small numbers of chronic phase (CP) cases experience disease progression each year during treatment. For these patients, TKIs induce only transient responses and alternative treatment strategies are urgently required. Depending on choice of first line TKI, approximately 30% of CML CP cases show suboptimal responses, due to a combination of poor compliance, drug intolerance, and drug resistance, with approximately 50% of TKI-resistance caused by kinase domain mutations and the remainder due to unknown mechanisms. Finally, the chance of successful treatment discontinuation is on the order of only 10–20% related to disease persistence. Disease persistence is a poorly understood phenomenon; all CML patients have functional Philadelphia positive (Ph+) stem and progenitor cells in their bone marrows and continue to express BCR-ABL1 by DNA PCR, even when in very deep remission and following treatment discontinuation. What controls the maintenance of these persisting cells, whether it is necessary to fully eradicate the malignant clone to achieve cure, and how that might be approached therapeutically are open questions.
    Immunological Reviews 01/2015; 263(1). · 12.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the effects of arsenic trioxide (ATO) and nilotinib (AMN107, Tasigna) alone or in combination on the proliferation and differentiation of primary leukemic cells from patients with chronic myeloid leukemia in the blast crisis phase (CML-BC). Cells were isolated from the bone marrow of CML-BC patients and were treated with 1 μM ATO and 5 nM nilotinib, either alone or in combination. Cell proliferation was evaluated using a MTT assay. Cell morphology and the content of hemoglobin were examined with Wright-Giemsa staining and benzidine staining, respectively. The expression of cell surface markers was determined using flow cytometric analysis. The levels of mRNA and protein were analyzed using RT-PCR and Western blotting, respectively. ATO and nilotinib alone or in combination suppressed cell proliferation in a dose- and time-dependent pattern (P < 0.01 vs. control). Drug treatments promoted erythroid differentiation of CML-BC cells, with a decreased nuclei/cytoplasm ratio but increased hemoglobin content and glycophorin A (GPA) expression (P < 0.01 compared with control). In addition, macrophage and granulocyte lineage differentiation was also induced after drug treatment. The mRNA and protein levels of basic helix-loop-helix (bHLH) transcription factor T-cell acute lymphocytic leukemia protein 1 (TAL1) and B cell translocation gene 1 (BTG1) were both upregulated after 3 days of ATO and Nilotinib treatment. Our findings indicated that ATO and nilotinib treatment alone or in combination greatly suppressed cell proliferation but promoted the differentiation of CML-BC cells towards multiple-lineages. Nilotinib alone preferentially induced erythroid differentiation while combined treatment with ATO preferentially induced macrophage and granulocyte lineage differentiation.
    Cancer Cell International 12/2015; 15(1). · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Without effective therapy, chronic phase chronic myeloid leukemia (CP-CML) evolves into an acute leukemia (blast crisis; BC) that displays either myeloid or B-lymphoid characteristics. This transition is often preceded by a clinically recognized, but biologically poorly characterized, accelerated phase (AP). Here we report that IKAROS protein is absent or reduced in bone marrow blasts from most CML patients with advanced myeloid disease (AP or BC). This contrasts with primitive CP-CML cells and BCR-ABL1-negative acute myeloid leukemia blasts which express readily detectable IKAROS. To investigate whether loss of IKAROS contributes to myeloid disease progression in CP-CML, we examined the effects of forced expression of a dominant-negative isoform of IKAROS (IK6) in CP-CML patients' CD34+ cells. We confirmed that IK6 disrupts IKAROS activity in transduced CP-CML cells and showed that it confers on them features of AP-CML, including a prolonged increased output in vitro and in xenografted mice of primitive cells with an enhanced ability to differentiate into basophils. Expression of IK6 in CD34+ CP-CML cells also led to activation of STAT5 and transcriptional repression of its negative regulators. These findings implicate loss of IKAROS as a frequent step and potential diagnostic harbinger of progressive myeloid disease in CML patients.
    Blood 11/2014; · 9.78 Impact Factor


Available from