Placental Leucine Aminopeptidase Efficiently Generates Mature Antigenic Peptides In Vitro but in Patterns Distinct from Endoplasmic Reticulum Aminopeptidase 1

Protein Chemistry Laboratory, Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research "Demokritos," Athens 15310, Greece.
The Journal of Immunology (Impact Factor: 4.92). 08/2010; 185(3):1584-92. DOI: 10.4049/jimmunol.0902502
Source: PubMed


All three members of the oxytocinase subfamily of M1 aminopeptidases, endoplasmic reticulum aminopeptidase 1 (ERAP1), ERAP2, and placental leucine aminopeptidase (PLAP), also known as insulin-regulated aminopeptidase, have been implicated in the generation of MHC class I-presented peptides. ERAP1 and 2 trim peptides in the endoplasmic reticulum for direct presentation, whereas PLAP has been recently implicated in cross-presentation. The best characterized member of the family, ERAP1, has unique enzymatic properties that fit well with its role in Ag processing. ERAP1 can trim a large variety of long peptide sequences and efficiently accumulate mature antigenic epitopes of 8-9 aa long. In this study, we evaluate the ability of PLAP to process antigenic peptide precursors in vitro and compare it with ERAP1. We find that, similar to ERAP1, PLAP can trim a variety of long peptide sequences efficiently and, in most cases, accumulates appreciable amounts of correct length mature antigenic epitope. Again, similar to ERAP1, PLAP continued trimming some of the epitopes tested and accumulated smaller products effectively destroying the epitope. However, the intermediate accumulation properties of ERAP1 and PLAP are distinct and epitope dependent, suggesting that these two enzymes may impose different selective pressures on epitope generation. Overall, although PLAP has the necessary enzymatic properties to participate in generating or destroying MHC class I-presented peptides, its trimming behavior is distinct from that of ERAP1, something that supports a separate role for these two enzymes in Ag processing.

Download full-text


Available from: Efstratios Stratikos,
  • Source
    • "Notably, IRAP was as efficient as the ERAP1–ERAP2 mixture in the generation of HIV gp160 final epitope, suggesting that the specificity of IRAP resembles that of ERAP1 and ERAP2 combined. The group of Stratikos confirmed this finding in two subsequent reports that analyzed the substrate specificity of ERAP1, ERAP2, and IRAP (Georgiadou et al., 2010; Zervoudi et al., 2011). Using fluorogenic analogs of peptide substrates, they demonstrated that IRAP has broader substrate specificity than isolated ERAP1 or ERAP2 and a broader pH range for optimal activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Production of MHC-I ligands from antigenic proteins generally requires multiple proteolytic events. While the proteolytic steps required for antigen processing in the endogenous pathway are clearly established, persisting gaps of knowledge regarding putative cross-presentation compartments have made it difficult to map the precise proteolytic events required for generation of cross-presented antigens. It is only in the past decade that the importance of aminoterminal trimming as the final step in the endogenous presentation pathway has been recognized and that the corresponding enzymes have been described. This review focuses on the aminoterminal trimming of exogenous cross-presented peptides, with particular emphasis on the identification of insulin responsive aminopeptidase (IRAP) as the principal trimming aminopeptidase in endosomes and phagosomes.
    Frontiers in Immunology 03/2012; 3:57. DOI:10.3389/fimmu.2012.00057
  • Source
    • "The endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and 2) are important in the immune response in terms of the antigen presentation [51] and they are colocalized within the endoplasmic reticulum (ER). The process starts with a proteolysis by the proteosome in the cytosol, and finally N-extended peptides are processed by aminopeptidase to mature the epitope which is presented by MHC class I. Data in mice have shown that ERAP1 trims MHC class I presented peptides in vivo and is the major trimming enzyme in the ER lumen; however ERAP2 also plays a role in the trimming of proteins [52]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Preeclampsia (PE) is one of the main causes of maternal and fetal morbidity and mortality in the world, causing nearly 40% of births delivered before 35 weeks of gestation. PE begins with inadequate trophoblast invasion early in pregnancy, which produces an increase in oxidative stress contributing to the development of systemic endothelial dysfunction in the later phases of the disease, leading to the characteristic clinical manifestation of PE. Numerous methods have been used to predict the onset of PE with different degrees of efficiency. These methods have used fetal/placental and maternal markers in different stages of pregnancy. From an epidemiological point of view, many studies have shown that PE is a disease with a strong familiar predisposition, which also varies according to geographical, socioeconomic, and racial features, and this information can be used in the prediction process. Large amounts of research have shown a genetic association with a multifactorial polygenic inheritance in the development of this disease. Many biological candidate genes and polymorphisms have been examined in their relation with PE. We will discuss the most important of them, grouped by the different pathogenic mechanisms involved in PE.
    Journal of pregnancy 01/2012; 2012:632732. DOI:10.1155/2012/632732
  • Source
    • "Close family members to IRAP, endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1, ERAP2), were identified as enzymes involved in the generation of mature antigenic epitopes from peptide precursors that are delivered into the ER by a transporter associated with antigen processing (Saveanu et al., 2005). Recently, IRAP has also been implicated in the generation of antigenic peptide for cross-presentation, not in the ER but in endosomal compartments (Saveanu et al., 2009) (Segura et al., 2009) and in patterns that are distinct from those processed by the ERAPs (Georgiadou et al., 2010). Therefore, not only has a new function for IRAP been discovered but also the peptide substrate specificity is significantly broader than previously proposed (Albiston et al., 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Two structurally distinct peptides, angiotensin IV and LVV-haemorphin 7, both competitive high-affinity inhibitors of insulin-regulated aminopeptidase (IRAP), were found to enhance aversion-associated and spatial memory in normal rats and to improve performance in a number of memory tasks in rat deficits models. These findings provide compelling support for the development of specific, high-affinity inhibitors of the enzyme as new cognitive enhancing agents. Different classes of IRAP inhibitors have been developed including peptidomimetics and small molecular weight compounds identified through in silico screening with a homology model of the catalytic domain of IRAP. The proof of principal that inhibition of IRAP activity results in facilitation of memory has been obtained by the demonstration that the small-molecule IRAP inhibitors also exhibit memory-enhancing properties.
    British Journal of Pharmacology 08/2011; 164(1):37 - 47. DOI:10.1111/j.1476-5381.2011.01402.x · 4.84 Impact Factor
Show more