Bepridil and Amiodarone Simultaneously Target the Alzheimer's Disease beta- and gamma-Secretase via Distinct Mechanisms

German Center for Neurodegenerative Diseases Munich and Adolf Butenandt-Institute, Biochemistry, University of Munich, 80336 Munich, Germany.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 06/2010; 30(26):8974-83. DOI: 10.1523/JNEUROSCI.1199-10.2010
Source: PubMed

ABSTRACT The two proteases beta-secretase and gamma-secretase generate the amyloid beta peptide and are drug targets for Alzheimer's disease. Here we tested the possibility of targeting the cellular environment of beta-secretase cleavage instead of the beta-secretase enzyme itself. beta-Secretase has an acidic pH optimum and cleaves the amyloid precursor protein in the acidic endosomes. We identified two drugs, bepridil and amiodarone, that are weak bases and are in clinical use as calcium antagonists. Independently of their calcium-blocking activity, both compounds mildly raised the membrane-proximal, endosomal pH and inhibited beta-secretase cleavage at therapeutically achievable concentrations in cultured cells, in primary neurons, and in vivo in guinea pigs. This shows that an alkalinization of the cellular environment could be a novel therapeutic strategy to inhibit beta-secretase. Surprisingly, bepridil and amiodarone also modulated gamma-secretase cleavage independently of endosomal alkalinization. Thus, both compounds act as dual modulators that simultaneously target beta- and gamma-secretase through distinct molecular mechanisms. In addition to Alzheimer's disease, compounds with dual properties may also be useful for drug development targeting other membrane proteins.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β and γ-secretases). The β-secretase enzyme BACE-1 requires acidic lumen pH for optimum function and acid pH promotes Aβ aggregation. The Na+/H+ exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6, or treatment with the Na+/H+ ionophore monensin, shifted APP away from the trans Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na+/H+ exchangers with Alzheimer Disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 01/2015; 290(9). DOI:10.1074/jbc.M114.602219 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development.
    PLoS ONE 06/2011; 6(6):e21337. DOI:10.1371/journal.pone.0021337 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: β-secretase, a key enzyme involved in amyloid-β generation, is an attractive candidate for Alzheimer's disease therapy. Transition-state inhibitors of β-secretase are designed to achieve specificity. However, these inhibitors bind only to the active conformation of the enzyme and as the active β-secretase is sequestered in subcellular compartments, new strategies have to be implemented. We propose that membrane-anchoring of β-secretase inhibitors would render them endocytosis-competent thereby enabling the inhibitors to reach these compartments that harbor active β-secretase. By choosing cholesterol as a membrane anchor, we also enrich the inhibitor in lipid rafts where much of the β-secretase is present. In addition, membrane-anchoring of soluble inhibitors reduces the dimensionality of the inhibitor and consequently increases the inhibitor concentration at the target membrane plane. Such inhibitors have great potential in terms of substrate selectivity and reduced side effects. Not only for β-secretase, this strategy could be applied for many membrane targets that are localized either at the plasma membrane or in the endocytic compartments.
    Journal of Alzheimer's disease: JAD 04/2011; 24 Suppl 2:143-52. DOI:10.3233/JAD-2011-110269 · 3.61 Impact Factor