Article

Novel swine influenza virus reassortants in pigs, China.

China Agricultural University, Beijing, People's Republic of China.
Emerging Infectious Diseases (Impact Factor: 7.33). 07/2010; 16(7):1162-4. DOI: 10.3201/eid1607.091881
Source: PubMed

ABSTRACT During swine influenza virus surveillance in pigs in China during 2006-2009, we isolated subtypes H1N1, H1N2, and H3N2 and found novel reassortment between contemporary swine and avian panzootic viruses. These reassortment events raise concern about generation of novel viruses in pigs, which could have pandemic potential.

0 Bookmarks
 · 
165 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2009 pH1N1 influenza pandemic resulted in at least 18,500 deaths worldwide. While pH1N1 is now considered to be in a post-pandemic stage in humans it has nevertheless spilled back into swine in at least 20 countries. Understanding the factors that increase the risk of spillover events between swine and humans is essential to predicting and preventing future outbreaks. We assessed risk factors that may have led to spillover of pH1N1 from humans to swine in Cameroon, Central Africa. We sampled swine, domestic poultry and wild birds for influenza A virus at twelve sites in Cameroon from December 2009 while the pandemic was ongoing, to August 2012. At the same time we conducted point-count surveys to assess the abundance of domestic livestock and wild birds and assess interspecific contact rates. Random forest models were used to assess which variables were the best predictors of influenza in swine. We found swine with either active pH1N1 infections or positive for influenza A at four of our twelve sites. Only one swine tested positive by competitive ELISA in 2011-2012. To date we have found pH1N1 only in the North and Extreme North regions of Cameroon (regions in Cameroon are administrative units similar to provinces), though half of our sites are in the Central and Western regions. Swine husbandry practices differ between the North and Extreme North regions where it is common practice in to let swine roam freely, and the Central and Western regions where swine are typically confined to pens. Random forest analyses revealed that the three best predictors of the presence of pH1N1 in swine were contact rates between free-ranging swine and domestic ducks, contact rates between free-ranging swine and wild Columbiformes, and contact rates between humans and ducks. Sites in which swine were allowed to range freely had closer contact with other species than did sites in which swine were kept penned. Results suggest that the practice of allowing swine to roam freely is a significant risk factor for spillover of influenza from humans into swine populations.
    BMC Veterinary Research 03/2014; 10(1):55. · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.
    Archives of Virology 06/2014; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While H2N2 viruses have been sporadically isolated from wild and domestic birds, H2N2 viruses have not been detected among human populations since 1968. Should H2N2 viruses adapt to domestic poultry they may pose a risk of infection to people, as most anyone born after 1968 would likely be susceptible to their infection. We report the isolation of a novel influenza A virus (H2N2) cultured in 2013 from a healthy domestic duck at a live poultry market in Wuxi City, China. Sequence data revealed that the novel H2N2 virus was similar to Eurasian avian lineage avian influenza viruses, the virus had been circulating for ≥ two years among poultry, had an increase in α2,6 binding affinity, and was not highly pathogenic. Approximately 9% of 100 healthy chickens sampled from the same area had elevated antibodies against the H2 antigen. Fortunately, there was sparse serological evidence that the virus was infecting poultry workers or had adapted to infect other mammals. These findings suggest that a novel H2N2 virus has been circulating among domestic poultry in Wuxi City, China and has some has increased human receptor affinity. It seems wise to conduct better surveillance for novel influenza viruses at Chinese live bird markets.
    Scientific Reports 12/2014; 4:7588. · 5.08 Impact Factor

Full-text (2 Sources)

Download
66 Downloads
Available from
May 27, 2014