Novel swine influenza virus reassortants in pigs, China.

China Agricultural University, Beijing, People's Republic of China.
Emerging Infectious Diseases (Impact Factor: 6.79). 07/2010; 16(7):1162-4. DOI: 10.3201/eid1607.091881
Source: PubMed

ABSTRACT During swine influenza virus surveillance in pigs in China during 2006-2009, we isolated subtypes H1N1, H1N2, and H3N2 and found novel reassortment between contemporary swine and avian panzootic viruses. These reassortment events raise concern about generation of novel viruses in pigs, which could have pandemic potential.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.
    Emerging Infectious Diseases 01/2014; 20(1):6-12. · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2009 pH1N1 influenza pandemic resulted in at least 18,500 deaths worldwide. While pH1N1 is now considered to be in a post-pandemic stage in humans it has nevertheless spilled back into swine in at least 20 countries. Understanding the factors that increase the risk of spillover events between swine and humans is essential to predicting and preventing future outbreaks. We assessed risk factors that may have led to spillover of pH1N1 from humans to swine in Cameroon, Central Africa. We sampled swine, domestic poultry and wild birds for influenza A virus at twelve sites in Cameroon from December 2009 while the pandemic was ongoing, to August 2012. At the same time we conducted point-count surveys to assess the abundance of domestic livestock and wild birds and assess interspecific contact rates. Random forest models were used to assess which variables were the best predictors of influenza in swine. We found swine with either active pH1N1 infections or positive for influenza A at four of our twelve sites. Only one swine tested positive by competitive ELISA in 2011-2012. To date we have found pH1N1 only in the North and Extreme North regions of Cameroon (regions in Cameroon are administrative units similar to provinces), though half of our sites are in the Central and Western regions. Swine husbandry practices differ between the North and Extreme North regions where it is common practice in to let swine roam freely, and the Central and Western regions where swine are typically confined to pens. Random forest analyses revealed that the three best predictors of the presence of pH1N1 in swine were contact rates between free-ranging swine and domestic ducks, contact rates between free-ranging swine and wild Columbiformes, and contact rates between humans and ducks. Sites in which swine were allowed to range freely had closer contact with other species than did sites in which swine were kept penned. Results suggest that the practice of allowing swine to roam freely is a significant risk factor for spillover of influenza from humans into swine populations.
    BMC Veterinary Research 03/2014; 10(1):55. · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pigs are susceptible to infection with both human and avian influenza A viruses and are considered intermediate hosts that facilitate virus reassortment. Although H5N1 virus has spread to a wide range of avian and mammalian species, data about swine H5N1 isolates are scarce. To determine whether Asian H5N1 influenza viruses had been transmitted to pigs, a total of 1,107 nasal swab samples from healthy swine were collected from 2008 to 2009 in Jiangsu province of eastern China. In this survey, two H5N1 viruses A/swine/Jiangsu/1/2008 (JS/08) and A/swine/Jiangsu/2/2009 (JS/09) were isolated and identified. Phylogenetic analysis showed that JS/08 and JS/09 belonged to clade 7 and clade 2.3.4, respectively, and shared over 99.0 % sequence identity with poultry H5N1 isolates of the same clade in China. Receptor specificity analysis also showed that both of the swine H5N1 isolates bound preferentially to avian-type receptors. However, experiments in mammals indicated that JS/09 was moderately pathogenic to mice without prior adaption, whereas JS/08 had limited ability to replicate. Our findings suggest that pigs are naturally infected with avian H5N1 virus and highlight the potential threat to public health due to adaption or reassortment of H5N1 virus in this species.
    Archives of Virology 07/2013; · 2.03 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014