Article

Comparative analysis of copy number detection by whole-genome BAC and oligonucleotide array CGH.

Signature Genomic Laboratories, Spokane, WA, USA. .
Molecular Cytogenetics (Impact Factor: 2.36). 01/2010; 3:11. DOI:10.1186/1755-8166-3-11
Source: PubMed

ABSTRACT Microarray-based comparative genomic hybridization (aCGH) is a powerful diagnostic tool for the detection of DNA copy number gains and losses associated with chromosome abnormalities, many of which are below the resolution of conventional chromosome analysis. It has been presumed that whole-genome oligonucleotide (oligo) arrays identify more clinically significant copy-number abnormalities than whole-genome bacterial artificial chromosome (BAC) arrays, yet this has not been systematically studied in a clinical diagnostic setting.
To determine the difference in detection rate between similarly designed BAC and oligo arrays, we developed whole-genome BAC and oligonucleotide microarrays and validated them in a side-by-side comparison of 466 consecutive clinical specimens submitted to our laboratory for aCGH. Of the 466 cases studied, 67 (14.3%) had a copy-number imbalance of potential clinical significance detectable by the whole-genome BAC array, and 73 (15.6%) had a copy-number imbalance of potential clinical significance detectable by the whole-genome oligo array. However, because both platforms identified copy number variants of unclear clinical significance, we designed a systematic method for the interpretation of copy number alterations and tested an additional 3,443 cases by BAC array and 3,096 cases by oligo array. Of those cases tested on the BAC array, 17.6% were found to have a copy-number abnormality of potential clinical significance, whereas the detection rate increased to 22.5% for the cases tested by oligo array. In addition, we validated the oligo array for detection of mosaicism and found that it could routinely detect mosaicism at levels of 30% and greater.
Although BAC arrays have faster turnaround times, the increased detection rate of oligo arrays makes them attractive for clinical cytogenetic testing.

0 0
 · 
0 Bookmarks
 · 
84 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays, both of which are useful for detection of genomic copy number variants (CNV) such as microdeletions and microduplications. The frequency of disease-causing CNVs is highest (20%-25%) in children with moderate to severe intellectual disability accompanied by malformations or dysmorphic features. Disease-causing CNVs are found in 5%-10% of cases of autism, being more frequent in severe phenotypes. CMA has replaced Giemsa-banded karyotype as the first-tier test for genetic evaluation of children with developmental and behavioral disabilities.
    Child Development 01/2013; · 4.92 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The goal of prenatal cytogenetic testing is to provide reassurance to the couple seeking testing for their pregnancy, identify chromosome abnormalities in the fetus, if present, and provide treatments and medical management for affected babies. Cytogenetic analysis of banded chromosomes has been the standard for identifying chromosome abnormalities in the fetus for over 40 years. With chromosome analysis, whole chromosome aneuploidies and large structural rearrangements can be identified. The sequencing of the human genome has provided the resources to develop molecular tools that allow higher resolution observations of human chromosomes. The future holds the promise of sequencing that may identify chromosomal imbalances and deleterious single nucleotide variants. This review will focus on the use of genomic microarrays for the testing and identification of chromosome anomalies in prenatal diagnosis and will discuss the future directions of fetal testing.
    Expert Review of Molecular Diagnostics 07/2013; 13(6):601-11. · 4.09 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The clinical utility of microarray technologies when used in the context of prenatal diagnosis lies in the technology's ability to detect sub-microscopic copy number changes that are associated with clinically significant outcomes. We have carried out a systematic review of the literature to calculate the utility of prenatal microarrays in the presence of a normal conventional karyotype. Amongst 12362 cases in studies that recruited cases from all prenatal ascertainment groups, 295/12362 (2.4%) overall were reported to have copy number changes with associated clinical significance (pCNC), 201/3090 (6.5%) when ascertained with an abnormal ultrasound, 50/5108 (1.0%) when ascertained because of increased maternal age and 44/4164 (1.1%) for all other ascertainment groups (e.g. parental anxiety, abnormal serum screening result etc). When additional prenatal microarray studies are included in which ascertainment was restricted to fetuses with abnormal ultrasound scans, 262/3730 (7.0%) were reported to have pCNCs. This article is protected by copyright. All rights reserved.
    Prenatal Diagnosis 08/2013; · 2.68 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from