Article

Phosphomimetic Substitution of Cytochrome c Tyrosine 48 Decreases Respiration and Binding to Cardiolipin and Abolishes Ability to Trigger Downstream Caspase Activation

Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
Biochemistry (Impact Factor: 3.19). 08/2010; 49(31):6705-14. DOI: 10.1021/bi100486s
Source: PubMed

ABSTRACT Mammalian cytochrome c (Cytc) transfers electrons from the bc(1) complex to cytochrome c oxidase (CcO) as part of the mitochondrial electron transport chain, and it also participates in type II apoptosis. Our recent discovery of two tyrosine phosphorylation sites in Cytc, Tyr97 in bovine heart and Tyr48 in bovine liver, indicates that Cytc functions are regulated through cell signaling. To characterize the role of Cytc tyrosine phosphorylation in detail using an independent approach, we here overexpressed and purified a Tyr48Glu mutant Cytc, mimicking the in vivo Tyr48 phosphorylation found in cow liver, along with wild-type and Tyr48Phe variants as controls. The midpoint redox potential of the phosphomimetic mutant was decreased by 45 mV compared to control (192 vs 237 mV). Similar to Tyr48 in vivo phosphorylated Cytc, direct kinetic analysis of the Cytc reaction with isolated CcO revealed decreased V(max) for the Tyr48Glu mutant by 30% compared to wild type or the Tyr48Phe variants. Moreover, the phosphomimetic substitution resulted in major changes of Cytc functions related to apoptosis. The binding affinity of Tyr48Glu Cytc to cardiolipin was decreased by about 30% compared to wild type or the Tyr48Phe variants, and Cytc peroxidase activity of the Tyr48Glu mutant was cardiolipin-inducible only at high cardiolipin concentration, unlike controls. Importantly, the Tyr48Glu Cytc failed to induce any detectable downstream activation of caspase-3. Our data suggest that in vivo Tyr48 phosphorylation might serve as an antiapoptotic switch and highlight the strategic position and role of the conserved Cytc residue Tyr48 in regulating multiple functions of Cytc.

0 Followers
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiolipins (CLs) are ancient and unusual dimeric phospholipids localized in the plasma membrane of bacteria and in the inner mitochondrial membrane of eukaryotes. In mitochondria, two types of asymmetries-trans-membrane and molecular - are essential determinants of CL functions. In this review, we describe CL-based signaling mitochondrial pathways realized via modulation of trans-membrane asymmetry and leading to externalization and peroxidation of CLs in mitophagy and apoptosis, respectively. We discuss possible mechanisms of CL translocations from the inner leaflet of the inner to the outer leaflet of the outer mitochondrial membranes. We present redox reaction mechanisms of cytochrome c-catalyzed CL peroxidation as a required stage in the execution of apoptosis as well as a possible source of lipid mediators. We also emphasize the significance of CL-related metabolic pathways as new targets for drug discovery. Finally, a remarkable diversity of polyunsaturated CL species and their oxidation products have evolved in eukaryotes vs. prokaryotes. This diversity - associated with CL molecular asymmetry - is presented as the basis for mitochondrial communications language.
    Chemistry and Physics of Lipids 11/2013; DOI:10.1016/j.chemphyslip.2013.11.010 · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial oxidative phosphorylation (OxPhos) system not only generates the vast majority of cellular energy, but is also involved in the generation of reactive oxygen species (ROS), and apoptosis. Cytochrome c (Cytc) and cytochrome c oxidase (COX) represent the terminal step of the electron transport chain (ETC), the proposed rate-limiting reaction in mammals. Cytc and COX show unique regulatory features including allosteric regulation, isoform expression, and regulation through cell signaling pathways. This chapter focuses on the latter and discusses all mapped phosphorylation sites based on the crystal structures of COX and Cytc. Several signaling pathways have been identified that target COX including protein kinase A and C, receptor tyrosine kinase, and inflammatory signaling. In addition, four phosphorylation sites have been mapped on Cytc with potentially large implications due to its multiple functions including apoptosis, a pathway that is overactive in stressed cells but inactive in cancer. The role of COX and Cytc phosphorylation is reviewed in a human disease context, including cancer, inflammation, sepsis, asthma, and ischemia/reperfusion injury as seen in myocardial infarction and ischemic stroke.
    Advances in Experimental Medicine and Biology 01/2012; 748:237-64. DOI:10.1007/978-1-4614-3573-0_10 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Reactive Nitrogen and Oxygen Species (the so-called RNOS), which are well-known radicals formed in the mitochondria under nitro-oxidative cell stress, are responsible for nitration of tyrosines in a wide variety of proteins and, in particular, in cytochrome c (Cc). Only three out of the five tyrosine residues of human Cc, namely those at positions 67, 74 and 97, have been detected in vivo as nitrotyrosines. However, nitration of the two other tyrosines, namely those at positions 46 and 48, has never been detected in vivo despite they are both well-exposed to solvent. Here we investigate the changes in heme coordination and alkaline transition, along with the peroxidase activity and in cell degradation of Cc mutants in which all their tyrosine residues - with the only exception of that at position 46 or 48 - are replaced by phenylalanines. In Jurkat cell extracts devoid of proteases inhibitors, only the high-spin iron nitrated forms of these monotyrosine mutants are degraded. Altogether the resulting data suggest that nitration of tyrosines 46 and 48 makes Cc easily degradable upon turning the heme iron state to high-spin.
    Biochimica et Biophysica Acta 09/2011; 1807(12):1616-23. DOI:10.1016/j.bbabio.2011.09.012 · 4.66 Impact Factor