Article

Glial Cells and Chronic Pain

Pain Research Unit, Department of Anesthesiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland.
The Neuroscientist (Impact Factor: 7.62). 10/2010; 16(5):519-31. DOI: 10.1177/1073858409360822
Source: PubMed

ABSTRACT Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future.

Download full-text

Full-text

Available from: Ru-Rong Ji, Jun 17, 2015
1 Follower
 · 
206 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There have been numerous studies conducted on time perception. However, very few of these have involved tactile stimuli to assess a subject’s capacity for duration discrimination. Previous optical imaging studies in non-human primates demonstrated that increasing the duration of a vibrotactile stimulus resulted in a consistently longer and more well defined evoked SI cortical response. Additionally, and perhaps more interestingly, increasing the amplitude of a vibrotactile stimulus not only evoked a larger magnitude optical intrinsic signal, but the return to baseline of the evoked response was much longer in duration for larger amplitude stimuli. The authors hypothesized that the magnitude of a vibrotactile stimulus could influence the perception of its duration. In order to test this hypothesis, subjects were asked to compare two sets of vibrotactile stimuli. When vibrotactile stimuli differed only in duration, subjects typically had a difference limen (DL) of approximately 13%, and this followed Weber’s Law for standards between 500 and 1500 ms, as increasing the value of the standard yielded a proportional increase in DL. However, the percept of duration was impacted by variations in amplitude of the vibrotactile stimuli. Specifically, increasing the amplitude of the standard stimulus had the effect of increasing the DL, while increasing the amplitude of the test stimulus had the effect of decreasing the DL. A pilot study, conducted on individuals who were concussed, found that increasing the amplitude of the standard did not have an impact on the DL of this group of individuals. Since this effect did not parallel what was predicted from the optical imaging findings in somatosensory cortex of non-human primates, the authors suggest that this particular measure or observation could be sensitive to neuroinflammation and that neuron-glial interactions, impacted by concussion, could have the effect of ignoring, or not integrating, the increased amplitude.
    Frontiers in Systems Neuroscience 05/2015; 9:77. DOI:10.3389/fnsys.2015.00077
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies of neurologic diseases induced by simian immunodeficiency virus (SIV) in Asian macaques have contributed greatly to the current understanding of human immunodeficiency virus pathogenesis in the brain and peripheral nervous system. Detailed investigations into SIV-induced alterations in the spinal cord, a critical sensorimotor relay point between the brain and the peripheral nervous system, have yet to be reported. In this study, lumbar spinal cords from SIV-infected pigtailed macaques were examined to quantify SIV replication and associated neuroinflammation. In untreated SIV-infected animals, there was a strong correlation between amount of SIV RNA in the spinal cord and expression of the macrophage marker CD68 and the key proinflammatory mediators tumor necrosis factor and CCL2. We also found a significant correlation between SIV-induced alterations in the spinal cord and the degree of distal epidermal nerve fiber loss among untreated animals. Spinal cord changes (including elevated glial fibrillary acidic protein immunostaining and enhanced CCL2 gene expression) also were present in SIV-infected antiretroviral drug-treated animals despite SIV suppression. A fuller understanding of the complex virus and host factor dynamics in the spinal cord during human immunodeficiency virus infection will be critical in the development of new treatments for human immunodeficiency virus-associated sensory neuropathies and studies aimed at eradicating the virus from the central nervous system.
    Journal of Neuropathology and Experimental Neurology 12/2014; 74(1). DOI:10.1097/NEN.0000000000000148 · 4.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the protective ability of 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA), an active principle in Korean cabbage kimchi, against the production of proinflammatory mediators and cytokines, and the mechanisms involved in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. HDMPPA significantly suppressed the production of nitric oxide (NO) and prostaglandin E2, along with the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV2 cells, at concentrations with no cytotoxicity. HDMPPA also attenuated the LPS-induced expression and secretion of proinflammatory cytokines, such as tumor necrosis factor-α and interleukin-1β. Furthermore, HDMPPA inhibited LPS-induced nuclear factor-κB (NF-κB) activation, which was associated with the abrogation of IκB-α degradation and phosphorylation, and subsequent decreases in NF-κB p65 levels. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) and Akt, a downstream molecule of phosphatidylinositol-3-kinase (PI3K), in LPS-stimulated BV2 cells was suppressed markedly by HDMPPA. This effect was associated with a significant reduction in the formation of intracellular reactive oxygen species. The findings in this study suggest that HDMPPA may exert anti-inflammatory responses by suppressing LPS-induced expression of proinflammatory mediators and cytokines through blockage of NF-κB, MAPKs, and PI3K/Akt signaling pathways and oxidative stress in microglia.
    Journal of medicinal food 04/2015; 18(6). DOI:10.1089/jmf.2014.3275 · 1.70 Impact Factor