Article

Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI

Department of Neurology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0525, USA.
Epilepsy & Behavior (Impact Factor: 2.06). 08/2010; 18(4):404-13. DOI: 10.1016/j.yebeh.2010.05.009
Source: PubMed

ABSTRACT In patients with idiopathic generalized epilepsies (IGEs), bursts of generalized spike and wave discharges (GSWDs) lasting > or =2 seconds are considered absence seizures. The location of the absence seizures generators in IGEs is thought to involve interplay between various components of thalamocortical circuits; we have recently postulated that medication resistance may, in part, be related to the location of the GSWD generators [Szaflarski JP, Lindsell CJ, Zakaria T, Banks C, Privitera MD. Epilepsy Behav. 2010;17:525-30]. In the present study we hypothesized that patients with medication-refractory IGE (R-IGE) and continued absence seizures may have GSWD generators in locations other than the thalamus, as typically seen in patients with IGE. Hence, the objective of this study was to determine the location of the GSWD generators in patients with R-IGE using EEG/fMRI. Eighty-three patients with IGE received concurrent EEG/fMRI at 4 T. Nine of them (aged 15-55) experienced absence seizures during EEG/fMRI and were included; all were diagnosed with R-IGE. Subjects participated in up to three 20-minute EEG/fMRI sessions (400 volumes, TR=3 seconds) performed at 4 T. After removal of fMRI and ballistocardiographic artifacts, 36 absence seizures were identified. Statistical parametric maps were generated for each of these sessions correlating seizures to BOLD response. Timing differences between brain regions were tested using statistical parametric maps generated by modeling seizures with onset times shifted relative to the GSWD onsets. Although thalamic BOLD responses peaked approximately 6 seconds after the onset of absence seizures, other areas including the prefrontal and dorsolateral cortices showed brief and nonsustained peaks occurring approximately 2 seconds prior to the maximum of the thalamic peak. Temporal lobe peaks occurred at the same time as the thalamic peak, with a cerebellar peak occurring approximately 1 second later. Confirmatory analysis averaging cross-correlation between cortical and thalamic regions of interest across seizures corroborated these findings. Finally, Granger causality analysis showed effective connectivity directed from frontal lobe to thalamus, supporting the notion of earlier frontal than thalamic involvement. The results of this study support our original hypothesis and indicate that in the patients with R-IGE studied, absence seizures may be initiated by widespread cortical (frontal and parietal) areas and sustained in subcortical (thalamic) regions, suggesting that the examined patients have cortical onset epilepsy with propagation to thalamus.

Download full-text

Full-text

Available from: Scott K Holland, Jun 28, 2015
1 Follower
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetoencephalography (MEG) was used to determine cortical and subcortical contributions to the formation of spike and wave discharges in twelve newly diagnosed, drug naïve children during forty-four generalized absence seizures. Previous studies have implicated various cortical areas and thalamic nuclei in the generation of absence seizures, but the relative timing of their activity remains unclear. Beamformer analysis using synthetic aperture magnetometry (SAM) was used to confirm the presence of independent thalamic activity, and standardized Low Resolution Brain Electromagnetic Topography (sLORETA) was used to compute statistical maps indicating source locations during absence seizures. Sources detected in the 50ms prior to the start of the seizure were more likely to be localized to the frontal cortex or thalamus. At the time of the first spike on EEG, focal source localization was seen in the lateral frontal cortex with decreased thalamic localization. Following the spike, localization became more widespread throughout the cortex. Comparison of the earliest spike and wave discharge (SWD) (Ictal Onset) and a SWD occurring 3s into the seizure (mid-Ictal) revealed significant differences during the slow wave portion of the SWDs. This study of MEG recordings in childhood absence seizures provides additional evidence that there are focal brain areas responsible for these seizures which appear bilaterally symmetric and generalized with a conventional 10-20 placement scalp EEG.
    Epilepsy research 06/2013; 106(1-2). DOI:10.1016/j.eplepsyres.2013.05.006 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simultaneous EEG-fMRI offers the possibility of non-invasively studying the spatiotemporal dynamics of epileptic activity propagation from the focus towards an extended brain network, through the identification of the haemodynamic correlates of ictal electrical discharges. In epilepsy associated with hypothalamic hamartomas (HH), seizures are known to originate in the HH but different propagation pathways have been proposed. Here, Dynamic Causal Modelling (DCM) was employed to estimate the seizure propagation pathway from fMRI data recorded in a HH patient, by testing a set of clinically plausible network connectivity models of discharge propagation. The model consistent with early propagation from the HH to the temporal-occipital lobe followed by the frontal lobe was selected as the most likely model to explain the data. Our results demonstrate the applicability of DCM to investigate patient-specific effective connectivity in epileptic networks identified with EEG-fMRI. In this way, it is possible to study the propagation pathway of seizure activity, which has potentially great impact in the decision of the surgical approach for epilepsy treatment.
    NeuroImage 05/2012; 62(3):1634-42. DOI:10.1016/j.neuroimage.2012.05.053 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that impaired GABAergic inhibition within neuronal networks can lead to hypersynchronous firing patterns that are the typical cellular hallmark of convulsive epileptic seizures. However, recent findings have highlighted that a pathological enhancement of GABAergic signalling within thalamocortical circuits is a necessary and sufficient condition for nonconvulsive typical absence seizure genesis. In particular, increased activation of extrasynaptic GABA(A) receptors (eGABA(A)R) and augmented "tonic" GABA(A) inhibition in thalamocortical neurons have been demonstrated across a range of genetic and pharmacological models of absence epilepsy. Moreover, evidence from monogenic mouse models (stargazer/lethargic) and the polygenic Genetic Absence Epilepsy Rats from Strasbourg (GAERS) indicate that the mechanism underlying eGABA(A)R gain of function is nonneuronal in nature and results from a deficiency in astrocytic GABA uptake through the GAT-1 transporter. These results challenge the existing theory that typical absence seizures are underpinned by a widespread loss of GABAergic function in thalamocortical circuits and illustrate a vital role for astrocytes in the pathology of typical absence epilepsy. Moreover, they explain why pharmacological agents that enhance GABA receptor function can initiate or exacerbate absence seizures and suggest a potential therapeutic role for inverse agonists at eGABA(A)Rs in absence epilepsy.
    Advances in Pharmacological Sciences 09/2011; 2011(1687-6334):790590. DOI:10.1155/2011/790590