Synergistic Activation of Phospholipase C-β3 by Gαq and Gβγ Describes a Simple Two-State Coincidence Detector

Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
Current biology: CB (Impact Factor: 9.57). 08/2010; 20(15):1327-35. DOI: 10.1016/j.cub.2010.06.013
Source: PubMed


Receptors that couple to G(i) and G(q) often interact synergistically in cells to elicit cytosolic Ca(2+) transients that are several-fold higher than the sum of those driven by each receptor alone. Such synergism is commonly assumed to be complex, requiring regulatory interaction between components, multiple pathways, or multiple states of the target protein.
We show that cellular G(i)-G(q) synergism derives from direct supra-additive stimulation of phospholipase C-beta3 (PLC-beta3) by G protein subunits Gbetagamma and Galpha(q), the relevant components of the G(i) and G(q) signaling pathways. No additional pathway or proteins are required. Synergism is quantitatively explained by the classical and simple two-state (inactive<-->active) allosteric mechanism. We show generally that synergistic activation of a two-state enzyme reflects enhanced conversion to the active state when both ligands are bound, not merely the enhancement of ligand affinity predicted by positive cooperativity. The two-state mechanism also explains why synergism is unique to PLC-beta3 among the four PLC-beta isoforms and, in general, why one enzyme may respond synergistically to two activators while another does not. Expression of synergism demands that an enzyme display low basal activity in the absence of ligand and becomes significant only when basal activity is </= 0.1% of maximal.
Synergism can be explained by a simple and general mechanism, and such a mechanism sets parameters for its occurrence. Any two-state enzyme is predicted to respond synergistically to multiple activating ligands if, but only if, its basal activity is strongly suppressed.

22 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Gq-linked G protein coupled receptors (GPCRs) and their signaling pathways are important clinical targets for the dementia of Alzheimer’s disease and cognitive decline with aging. Gq stimulates phospholipase C-β1 (PLC-β1) activity, increasing levels of inositol-1, 4, 5-trisphosphate (IP3) and diacylglycerol, to initiate mobilization of intracellular Ca2+ and activation of protein kinase C, respectively. While high concentrations of ligand typically evoke large sustained increases in cytosolic Ca2+ levels, it has long been appreciated that the dynamics of the Ca2+ increase are more complex and consistent with multiple levels of regulation. Physiologically relevant concentrations of Gq-ligands evoke rhythmic fluctuations or an oscillation in the level of cytosolic Ca2+. Downstream targets are tuned to respond to the frequency of the Ca2+ oscillations which in turn, reflect the oscillations in IP3 levels. Oscillatory behavior depends on the assembly of self-organizing interactions. The components that contribute to and regulate the Ca2+ oscillator have been unclear, precluding transfer of this fundamental knowledge from bench to bedside. Many GPCRs that signal with Gq also co-signal with G12. G protein co-signaling could therefore regulate the Ca2+ oscillator. This letter explores the potential relationship between Ca2+ oscillations, G protein co-signaling and cellular response in the context of our recent observations. We found that Gq efficacy is synergistic with phosphatidic acid, (PA), a signaling mediator generated downstream of activated G12 and RhoA. Regulation by PA depends on interaction with the unique PLC-β1 PA binding region. G protein co-signaling is therefore a mechanism for GPCRs to collectively assemble self-organizing interactions that regulate the Ca2+ oscillator.
    03/2013; 4(1). DOI:10.2478/s13380-013-0102-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cross-talk between Gα(i)- and Gα(q)-linked G-protein-coupled receptors yields synergistic Ca(2+) responses in a variety of cell types. Prior studies have shown that synergistic Ca(2+) responses from macrophage G-protein-coupled receptors are primarily dependent on phospholipase Cβ3 (PLCβ3), with a possible contribution of PLCβ2, whereas signaling through PLCβ4 interferes with synergy. We here show that synergy can be induced by the combination of Gβγ and Gα(q) activation of a single PLCβ isoform. Synergy was absent in macrophages lacking both PLCβ2 and PLCβ3, but it was fully reconstituted following transduction with PLCβ3 alone. Mechanisms of PLCβ-mediated synergy were further explored in NIH-3T3 cells, which express little if any PLCβ2. RNAi-mediated knockdown of endogenous PLCβs demonstrated that synergy in these cells was dependent on PLCβ3, but PLCβ1 and PLCβ4 did not contribute, and overexpression of either isoform inhibited Ca(2+) synergy. When synergy was blocked by RNAi of endogenous PLCβ3, it could be reconstituted by expression of either human PLCβ3 or mouse PLCβ2. In contrast, it could not be reconstituted by human PLCβ3 with a mutation of the Y box, which disrupted activation by Gβγ, and it was only partially restored by human PLCβ3 with a mutation of the C terminus, which partly disrupted activation by Gα(q). Thus, both Gβγ and Gα(q) contribute to activation of PLCβ3 in cells for Ca(2+) synergy. We conclude that Ca(2+) synergy between Gα(i)-coupled and Gα(q)-coupled receptors requires the direct action of both Gβγ and Gα(q) on PLCβ and is mediated primarily by PLCβ3, although PLCβ2 is also competent.
    Journal of Biological Chemistry 10/2010; 286(2):942-51. DOI:10.1074/jbc.M110.198200 · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The phosphatidylinositol signalling pathway is responsible for regulating a wide variety of processes in the cell via its regulation of intracellular calcium levels. This pathway is known to respond synergistically to certain combinations of signals. Key components in this pathway are the isoforms of PLCβ, which are capable of binding two upstream effectors, Gaq and Gβγ, and may do this in an allosteric way. We present a modelling investigation into how two different isoforms of PLCβ, PLCβ2 and PLCβ3, displaying different degrees of allostery, may interact with one another to modify the overall pathway synergy. We show how the synergy depends on both the absolute and relative concentrations of the two isoforms, and explain these effects mechanistically through the uptake of Gaq and Gβγ by PLCβ2 and PLCβ3. From a systems perspective, this illustrates how synergy, which is present at a single-molecule level through allostery, is modified in the context of a pathway. Furthermore, it allows consideration of how this effect may be significant in the wider system, which consists of many other downstream interconnections and feedbacks.
    Intelligent Systems and Control; 01/2011
Show more


22 Reads
Available from