Ghoshroy S, Binder M, Tartar A, Robertson DL.. Molecular evolution of glutamine synthetase II: phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution. BMC Evol Biol 10: 198

Clark University, Biology Department, Worcester, MA 01610, USA.
BMC Evolutionary Biology (Impact Factor: 3.37). 06/2010; 10(1):198. DOI: 10.1186/1471-2148-10-198
Source: PubMed


Glutamine synthetase (GS) is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII) are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from gamma-Proteobacteria (Eubacteria) to the Chloroplastida.
GSII sequences were isolated from four species of green algae (Trebouxiophyceae), and additional green algal (Chlorophyceae and Prasinophytae) and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta) sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB) and eukaryotic (GSIIE) GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the gamma-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT). Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida). However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting a cytosolic function. GSIIB sequences were absent in vascular plants where the duplication of GSIIE replaced the function of GSIIB.
Phylogenetic evidence suggests GSIIB in Chloroplastida evolved by HGT, possibly after the divergence of the primary endosymbiotic lineages. Thus while multiple GS isoenzymes are common among members of the Chloroplastida, the isoenzymes may have evolved via different evolutionary processes. The acquisition of essential enzymes by HGT may provide rapid changes in biochemical capacity and therefore be favored by natural selection.

Download full-text


Available from: Aurélien Tartar,
  • Source
    • "GSII E sequences from the remaining chlorophytes formed a separate well-supported clade (BPP [ 0.95; MLBS = 98) that was distinct from the Micromonas sequences. Previous analyses identified GSII B protein sequences in chlorophytes and streptophytes, which were determined phylogenetically to be of eubacterial origin (Ghoshroy et al. 2010). In the current analyses, the GSII B sequences formed a well-supported clade (BPP [ 0.95; MLBS 100) nested within the larger eubacterial clade and distinct from the GSII E sequences. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.
    Journal of Molecular Evolution 12/2014; 80(1). DOI:10.1007/s00239-014-9659-3 · 1.68 Impact Factor
  • Source
    • "In eukaryotic autotrophic cells, there are basically two isoforms of GS: GS1 localized in the cytoplasm and GS2 in chloroplasts and mitochondria [25]–[26]. In higher plants, the GS2 protein is usually encoded by a single nuclear gene and is expressed specifically in leaves [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis) subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S-trnI (left) and trnA-rrn23S (right) as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga.
    PLoS ONE 06/2014; 9(6):e98607. DOI:10.1371/journal.pone.0098607 · 3.23 Impact Factor
  • Source
    • "The plastid glutamine synthetase (GS) in Arabidopsis, viridiplants in general, and red algae has a putative host origin28. The Cyanophora homolog was not recovered in our plastid GS tree, but it was retrieved in the several ML trees estimated when Arabidopsis non-plastid GS isoenzymes were used as queries (Supplementary Table S1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of >100 Arabidopsis nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a shared phylogenetic origin in the three Plantae lineages. We hypothesize that during the evolution of plastids some enzymes encoded in the host nuclear genome were mistargeted into the plastid. Then, the activity of those foreign enzymes was sustained by both the plastid metabolites and interactions with the native cyanobacterial enzymes. Some of the novel enzymatic activities were favored by selective compartmentation of additional complementary enzymes. The mosaic phylogenetic composition of the plastid amino acid biosynthetic pathways and the reduced number of plastid-encoded proteins of non-cyanobacterial origin suggest that enzyme recruitment underlies the recompartmentation of metabolic routes during the evolution of plastids.
    Scientific Reports 12/2012; 2:955. DOI:10.1038/srep00955 · 5.58 Impact Factor
Show more