Genetic Alterations in the Phosphatidylinositol-3 Kinase/Akt Pathway in Thyroid Cancer

Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
Thyroid: official journal of the American Thyroid Association (Impact Factor: 3.84). 07/2010; 20(7):697-706. DOI: 10.1089/thy.2010.1646
Source: PubMed

ABSTRACT Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years.
This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC.
Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.

Download full-text


Available from: Mingzhao Xing, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery that the mammalian genome is largely transcribed and that almost half of the polyadenylated RNAs is composed of noncoding RNAs has attracted the attention of the scientific community. Growing amount of data suggests that long noncoding RNAs (lncRNAs) are a new class of regulators involved not only in physiological processes, such as imprinting and differentiation, but also in cancer progression and neurodegeneration. Apoptosis is a well regulated type of programmed cell death necessary for correct organ development and tissue homeostasis. Indeed, cancer cells often show an inhibition of the apoptotic pathways and it is now emerging that overexpression or downregulation of different lncRNAs in specific types of tumors sensitize cancer cells to apoptotic stimuli. In this review we summarize the latest studies on lncRNAs and apoptosis with major attention to those performed in cancer cells and in healthy cells upon differentiation. We discuss the new perspectives of using lncRNAs as targets of anticancer drugs. Finally, considering that lncRNA levels have been reported to have a correlation with specific cancer types, we argue the possibility of using lncRNAs as tumor biomarkers.
    International Journal of Cell Biology 01/2014; 2014:473857. DOI:10.1155/2014/473857
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TSH receptor (TSHR) and sodium/iodide symporter (NIS) are key players in radioiodine-based treatment of differentiated thyroid cancers. While NIS expression is diminished/lost in most thyroid tumors, TSHR is usually preserved. To examine the mechanisms that regulate the expression of NIS and TSHR genes in thyroid tumor cells, we analyzed their expression after inhibition of ras-BRAF-MAPK and PI3K-Akt-mTOR pathways and the epigenetic control occurring at the gene promoter level in four human thyroid cancer cell lines. Quantitative real-time PCR was used to measure NIS and TSHR mRNA in thyroid cancer cell lines (TPC-1, BCPAP, WRO and FTC-133). Western blotting was used to assess levels of total and phosphorylated ERK and Akt. Chromatin immunoprecipitation was performed for investigating histone post-translational modifications of the TSHR and NIS genes. ERK and Akt inhibitors elicited different responses of the cells in terms of TSHR and NIS mRNA levels. Akt inhibition increased NIS transcript levels and reduced those of TSHR in FTC-133 cells but had no significant effects in BCPAP. ERK inhibition increased the expression of both genes in BCPAP cells but had no effects in FTC-133. Histone post-translational modifications observed in the basal state of the four cell lines as well as in BCPAP treated with ERK inhibitor and FTC-133 treated with Akt inhibitor show cell- and gene-specific differences. In conclusion, our data indicate that in thyroid cancer cells the expression of TSHR and NIS genes is differently controlled by multiple mechanisms, including epigenetic events elicited by major signaling pathways involved in thyroid tumorigenesis.
    Journal of Molecular Endocrinology 12/2013; 52(2). DOI:10.1530/JME-13-0160 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To explore the association between PIK3CA and AKT single nucleotide polymorphisms(SNP) and osteosarcoma susceptibility. Methods: TaqMan polymerase chain reaction(PCR) was used to detect the genotypes of SNPs (rs7646409, rs6973569 and rs9866361) in peripheral blood samples from 59 patients with osteosarcoma and from 63 healthy controls. Unconditional logistic regression was used to analyze the correlation between SNPs and osteosarcoma risk. Results: No statistically significant difference was found between osteosarcoma patients and healthy controls in the genotype of AKT rs6973569 (P = 0.7). However, after stratified analysis, the genotype AA of AKT rs6973569 carried a higher risk of osteosarcoma metastasis (OR:2.94, 95%CL:1.00-8.59); the difference of rs7646409 genotype distributions between the case and control groups was statistically significant (P = 0.032). Taking genotype TT as a reference, the risk of osteosarcoma increased three fold in patients with genotype CC (OR:3.47, 95%CL:1.26-9.56). A statistically significant difference was found between the alleles C and T (P=0.005). Further analysis showed that the risk factor was more pronounced in male patients with Enneking's stage IIB and osteoblastic osteosarcoma. PIK3CA rs9866361 did not fit Hardy-Weinberg equilibrium (P < 0.05). Conclusions: Genotype CC in locus PIK3CA rs7646409 may increase the risk of osteosarcoma in the Chinese population.
    Asian Pacific journal of cancer prevention: APJCP 09/2013; 14(9):5117-22. DOI:10.7314/APJCP.2013.14.9.5117 · 2.51 Impact Factor