Article

Genetic Alterations in the Phosphatidylinositol-3 Kinase/Akt Pathway in Thyroid Cancer

Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
Thyroid: official journal of the American Thyroid Association (Impact Factor: 2.6). 07/2010; 20(7):697-706. DOI: 10.1089/thy.2010.1646
Source: PubMed

ABSTRACT Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years.
This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC.
Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.

0 Bookmarks
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid cancer is the most common endocrine malignancy. Despite having a good prognosis in the majority of cases, when the tumor is dedifferentiated it does no longer respond to conventional treatment with radioactive iodine, the prognosis worsens significantly. Treatment options for advanced, dedifferentiated disease are limited and do not cure the disease. Autophagy, a process of self-digestion in which damaged molecules or organelles are degraded and recycled, has emerged as an important player in the pathogenesis of different diseases, including cancer. The role of autophagy in thyroid cancer pathogenesis is not yet elucidated. However, the available data indicate that autophagy is involved in several steps of thyroid tumor initiation and progression as well as in therapy resistance and therefore could be exploited for therapeutic applications. The present review summarizes the most recent data on the role of autophagy in the pathogenesis of thyroid cancer and we will provide a perspective on how this process can be targeted for potential therapeutic approaches and could be further explored in the context of multimodality treatment in cancer and personalized medicine.
    Frontiers in Endocrinology 01/2015; 6:22. DOI:10.3389/fendo.2015.00022
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomarkers predicting which patients with advanced radioiodine-resistant differentiated thyroid cancer (DTC) may benefit from multi-kinase inhibitors are unavailable. We aimed to describe molecular markers in DTC that correlate with clinical outcome to axitinib. Pretreatment thyroid cancer blocks from 18 patients treated with axitinib were collected and genomic DNA was isolated. The OncoCarta(tm) Mutation Panel was used to test for 238 oncogenic mutations. Copy number of VEGFR1-3 and PIK3CA was determined using qPCR on enriched tumor samples. Genomic DNA was analyzed for all coding regions of VEGFR1-3 with custom primers. Protein expression of VEGFR1-3, c-Met, and PIK3CA were evaluated with immunohistochemistry. Clinical response to axitinib, including best response (BR) and progression free survival (PFS), were ascertained from corresponding patients. Fisher's exact test and logistic regression models were used to correlate BR with molecular findings. Cox proportional hazards regression was used to correlate PFS with molecular defects. A total of 22 pathology samples (10 primary, 12 metastatic) were identified. In patients with 2 samples (n= 4), genetic results were concordant and only included once for analysis. Tumors from 4 patients (22%) harbored BRAF V600E mutations, 2 (11%) had KRAS mutations (G12A, G13D) and 2 (11%) had HRAS mutations (Q61R, Q61K). One metastatic sample with mutated KRAS also harbored a PIK3CA (H1047R) mutation. qPCR showed increased copy numbers of PIK3CA in 6 (33%) tumors, VEGFR1 in 0 (0%) tumors, VEGFR2 in 4 (22%) tumors, and VEGFR3 in 6 (33%) tumors. VEGFR sequencing was significant for a possibly damaging non-synonymous SNP in VEGFR2 (G539R) in 2 samples (11%), a possibly damaging SNP in VEGFR3 (E350V) in 1 sample (6%), and a potentially novel mutation in VEGFR2 (T439I) in 2 samples (11%). Immunohistochemistry (VEGFR1, -2, -3; c-MET; PIK3CA) revealed positive staining in the majority of samples. No significant relationship was seen between BR or PFS and the presence of molecular alterations. Molecular evaluation of DTC specimens did not predict clinical response to axitinib but our data were limited by sample size. We did identify molecular changes in VEGFR that should be further explored. While DTC is genetically heterogeneous, primary and metastatic lesions showed identical oncogenic alterations in four cases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Cancer Letters 01/2015; 359(2). DOI:10.1016/j.canlet.2015.01.024 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Distant metastases from thyroid cancer of follicular origin are uncommon. Treatment includes levothyroxine administration at suppressive doses, focal treatment modalities with surgery, external radiation therapy and thermal ablation, and radioiodine in patients with uptake of (131)I in their metastases. Two thirds of distant metastases will become refractory to radioiodine at some point, and when there is a significant tumor burden and documented progression on imaging, a treatment with a kinase inhibitor may provide benefits.
    02/2015; 7. DOI:10.12703/P7-22

Full-text (2 Sources)

Download
44 Downloads
Available from
Jun 3, 2014