Article

Rotating antibiotics selects optimally against antibiotic resistance, in theory.

Department of Mathematics, Imperial College London, SW7 2AZ, London, United Kingdom.
Mathematical Biosciences and Engineering (Impact Factor: 1.12). 07/2010; 7(3):527-52. DOI: 10.3934/mbe.2010.7.527
Source: PubMed

ABSTRACT The purpose of this paper is to use mathematical models to investigate the claim made in the medical literature over a decade ago that the routine rotation of antibiotics in an intensive care unit (ICU) will select against the evolution and spread of antibiotic-resistant pathogens. In contrast, previous theoretical studies addressing this question have demonstrated that routinely changing the drug of choice for a given pathogenic infection may in fact lead to a greater incidence of drug resistance in comparison to the random deployment of different drugs. Using mathematical models that do not explicitly incorporate the spatial dynamics of pathogen transmission within the ICU or hospital and assuming the antibiotics are from distinct functional groups, we use a control theoretic-approach to prove that one can relax the medical notion of what constitutes an antibiotic rotation and so obtain protocols that are arbitrarily close to the optimum. Finally, we show that theoretical feedback control measures that rotate between different antibiotics motivated directly by the outcome of clinical studies can be deployed to good effect to reduce the prevalence of antibiotic resistance below what can be achieved with random antibiotic use.

0 Bookmarks
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of antibiotic resistance in microbes poses one of the greatest challenges to the management of human health. Because addressing the problem experimentally has been difficult, research on strategies to slow the evolution of resistance through the rational use of antibiotics has resorted to mathematical and computational models. However, despite many advances, several questions remain unsettled. Here we present a population model for rational antibiotic usage by adding three key features that have been overlooked: 1) the maximization of the frequency of uninfected patients in the human population rather than the minimization of antibiotic resistance in the bacterial population, 2) the use of cocktails containing antibiotic pairs, and 3) the imposition of tradeoff constraints on bacterial resistance to multiple drugs. Because of tradeoffs, bacterial resistance does not evolve directionally and the system reaches an equilibrium state. When considering the equilibrium frequency of uninfected patients, both cycling and mixing improve upon single-drug treatment strategies. Mixing outperforms optimal cycling regimens. Cocktails further improve upon aforementioned strategies. Moreover, conditions that increase the population frequency of uninfected patients also increase the recovery rate of infected individual patients. Thus, a rational strategy does not necessarily result in a tragedy of the commons because benefits to the individual patient and general public are not in conflict. Our identification of cocktails as the best strategy when tradeoffs between multiple-resistance are operating could also be extended to other host-pathogen systems. Cocktails or other multiple-drug treatments are additionally attractive because they allow re-using antibiotics whose utility has been negated by the evolution of single resistance.
    PLoS ONE 01/2014; 9(1):e86971. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic transmission models are increasingly being used to improve our understanding of the epidemiology of healthcare-associated infections (HCAI). However, there has been no recent comprehensive review of this emerging field. This paper summarises how mathematical models have informed the field of HCAI and how methods have developed over time. MEDLINE, EMBASE, Scopus, CINAHL plus and Global Health databases were systematically searched for dynamic mathematical models of HCAI transmission and/or the dynamics of antimicrobial resistance in healthcare settings. In total, 96 papers met the eligibility criteria. The main research themes considered were evaluation of infection control effectiveness (64%), variability in transmission routes (7%), the impact of movement patterns between healthcare institutes (5%), the development of antimicrobial resistance (3%), and strain competitiveness or co-colonisation with different strains (3%). Methicillin-resistant Staphylococcus aureus was the most commonly modelled HCAI (34%), followed by vancomycin resistant enterococci (16%). Other common HCAIs, e.g. Clostridum difficile, were rarely investigated (3%). Very few models have been published on HCAI from low or middle-income countries.The first HCAI model has looked at antimicrobial resistance in hospital settings using compartmental deterministic approaches. Stochastic models (which include the role of chance in the transmission process) are becoming increasingly common. Model calibration (inference of unknown parameters by fitting models to data) and sensitivity analysis are comparatively uncommon, occurring in 35% and 36% of studies respectively, but their application is increasing. Only 5% of models compared their predictions to external data. Transmission models have been used to understand complex systems and to predict the impact of control policies. Methods have generally improved, with an increased use of stochastic models, and more advanced methods for formal model fitting and sensitivity analyses. Insights gained from these models could be broadened to a wider range of pathogens and settings. Improvements in the availability of data and statistical methods could enhance the predictive ability of models.
    BMC Infectious Diseases 06/2013; 13(1):294. · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property exist yet. Here, we mathematically compare growth of resistant versus sensitive strains under different treatments (no drugs, antibiotic, and antiR), and show how a precisely timed combination of treatments may help defeat resistant strains. Our analysis is based on a previously developed model of infection and immunity in which a costly plasmid confers antibiotic resistance. As expected, antibiotic treatment increases the frequency of the resistant strain, while the plasmid cost causes a reduction of resistance in the absence of antibiotic selection. Our analysis suggests that this reduction occurs under competition for limited resources. Based on this model, we estimate treatment schedules that would lead to a complete elimination of both sensitive and resistant strains. In particular, we derive an analytical expression for the rate of resistance loss, and hence for the time necessary to turn a resistant infection into sensitive (tclear ). This time depends on the experimentally measurable rates of pathogen division, growth and plasmid loss. Finally, we estimated tclear for a specific case, using available empirical data, and found that resistance may be lost up to 15 times faster under antiR treatment when compared to a no treatment regime. This strategy may be particularly suitable to treat chronic infection. Finally, our analysis suggests that accounting explicitly for a resistance-decaying rate may drastically change predicted outcomes in host-population models.
    PLoS ONE 01/2013; 8(12):e80775. · 3.73 Impact Factor