Article

Carbohydrate and exercise performance: the role of multiple transportable carbohydrates.

School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
Current opinion in clinical nutrition and metabolic care 07/2010; 13(4):452-7. DOI: 10.1097/MCO.0b013e328339de9f
Source: PubMed

ABSTRACT Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise.
It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate.
Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.

7 Followers
 · 
644 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Exhaustive or unaccustomed intense exercise can cause exercise-induced muscle damage (EIMD) and its undesirable consequences may decrease the ability to exercise and to adhere to a training programme. This review briefly summarises the muscle damage process, focusing predominantly on oxidative stress and inflammation as contributing factors, and describes how nutrition may be positively used to recover from EIMD. The combined intake of carbohydrates and proteins and the use of antioxidants and/or anti-inflammatory nutrients within physiological ranges are interventions that may assist the recovery process. Although the works studying food instead of nutritional supplements are very scarce, their results seem to indicate that food might be a favourable option as a recovery strategy. To date, the only tested foods were milk, cherries, blueberries and pomegranate with promising results. Other potential solutions are foods rich in protein, carbohydrates, antioxidants and/or anti-inflammatory nutrients.
    International Journal of Food Sciences and Nutrition 11/2013; DOI:10.3109/09637486.2013.849662 · 1.20 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endurance sports are increasing in popularity and athletes at all levels are looking for ways to optimize their performance by training and nutrition. For endurance exercise lasting 30 min or more, the most likely contributors to fatigue are dehydration and carbohydrate depletion, whereas gastrointestinal problems, hyperthermia, and hyponatraemia can reduce endurance exercise performance and are potentially health threatening, especially in longer events (>4 h). Although high muscle glycogen concentrations at the start may be beneficial for endurance exercise, this does not necessarily have to be achieved by the traditional supercompensation protocol. An individualized nutritional strategy can be developed that aims to deliver carbohydrate to the working muscle at a rate that is dependent on the absolute exercise intensity as well as the duration of the event. Endurance athletes should attempt to minimize dehydration and limit body mass losses through sweating to 2-3% of body mass. Gastrointestinal problems occur frequently, especially in long-distance races. Problems seem to be highly individual and perhaps genetically determined but may also be related to the intake of highly concentrated carbohydrate solutions, hyperosmotic drinks, as well as the intake of fibre, fat, and protein. Hyponatraemia has occasionally been reported, especially among slower competitors with very high intakes of water or other low sodium drinks. Here I provide a comprehensive overview of recent research findings and suggest several new guidelines for the endurance athlete on the basis of this. These guidelines are more detailed and allow a more individualized approach.
    Journal of Sports Sciences 09/2011; 29 Suppl 1:S91-9. DOI:10.1080/02640414.2011.610348 · 2.10 Impact Factor