Sensorimotor mapping for anticipatory grip force modulation.

Center for Systems Engineering and Applied Mechanics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
Journal of Neurophysiology (Impact Factor: 3.3). 09/2010; 104(3):1401-8. DOI: 10.1152/jn.00114.2010
Source: PubMed

ABSTRACT During object manipulation, predictive grip force modulation allows compensation for inertial forces induced by the object's acceleration. This coupling between grip force (GF) and load force (LF) during voluntary movements has demonstrated high levels of complexity, adaptability, and flexibility under many loading conditions in a broad range of experimental studies. The association between GF and LF indicates the presence of internal models underlying predictive GF control. The present experiment sought to identify the variables taken into account during GF modulation at the initiation of a movement. Twenty subjects performed discrete point-to-point movements under normal and hypergravity conditions induced by parabolic flights. Two control experiments performed under normal gravitational conditions compared the observed effect of the increase in gravity with the effects of a change in movement kinematics and a change in mass. In hypergravity, subjects responded accurately to the increase in weight during stationary holding but overestimated inertial loads. During dynamic phases, the relationship between GF and LF under hypergravity varied in a manner similar to the control test in which object mass was increased, whereas a change in movement kinematics could not reproduce this result. We suggest that the subjects' strategy for anticipatory GF modulation is based on sensorimotor mapping that combines the perception of the weight encoded during stationary holding with an internal representation of the movement kinematics. In particular, such a combination reflects a prior knowledge of the unequivocal relationship linking mass, weight, and loads under the invariant gravitational context experienced on Earth.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate whether people change their isometric pinch grip generation depending on the surface they gripped. Specifically, the effect of grip surface friction condition on (a) maximum force produced in the direction normal to the contact surface, (b) fluctuation of normal force, and (c) the digit force's angular deviation from the direction normal to the grip surface was quantified. Isometric pinch grip has been traditionally thought to be independent from the friction condition between the finger and gripped surface, which may be questionable. For this study, 12 healthy participants performed maximum isometric pinch grip exertion on high-friction rubber and low-friction paper surfaces. Maximum normal force, normal force variance,and digit force's angular deviation from the normal direction were quantified. Pinch grip on the high-friction rubber surface was associated with 10% greater maximum normal force and 50% reduced normal force variance, compared with the low-friction paper surface (p < .05). Digit force's angular deviation was not significantly different between the two surface friction conditions. The data support that people do change their pinch grip generation (maximum normal force and normal force variance) depending on the surface they gripped, potentially by using sensory feedback. The results of this study demonstrate that even a simple isometric pinch grip (no lifting associated) is affected by grip surface friction. Grip surface condition should be considered for clinical assessments, biomechanical investigation, and motor control studies to ensure consistency in measurements and validity of comparisons.
    Human Factors The Journal of the Human Factors and Ergonomics Society 12/2011; 53(6):740-8. · 1.18 Impact Factor
  • 64th IAF Congress, Beijing, China; 10/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies of motor learning have examined the adaptation of hand trajectories and grip forces when moving grasped objects with novel dynamics. Such objects initially result in both kinematic and kinetic errors; i.e., mismatches between predicted and actual trajectories and between predicted and actual load forces. Here we investigated the contribution of these errors to both trajectory and grip force adaptation. Participants grasped an object with novel dynamics using a precision grip and moved it between two targets. Kinematic errors could be effectively removed using a force channel to constrain hand motion to a straight line. When moving in the channel, participants learned to modulate grip force in synchrony with load force and this learning generalized when movement speed in the channel was doubled. When the channel was removed, these participants continued to effectively modulate grip force but exhibited substantial kinematic errors, equivalent to those seen in participants who did not previously experience the object in the channel. We also found that the rate of grip force adaptation did not depend on whether the object was initially moved with or without a channel. These results indicate that kinematic errors are necessary for trajectory but not grip force adaptation, and that kinetic errors are sufficient for grip force but not trajectory adaptation. Thus, participants can learn a component of the object's dynamics, used to control grip force, based solely on kinetic errors. However, this knowledge is apparently not accessible or usable for controlling the movement trajectory when the channel is removed.
    Journal of Neuroscience 01/2013; 33(5):2229-36. · 6.91 Impact Factor


Available from
May 17, 2014