Dipeptidyl peptidase-like protein 6 is required for normal electrophysiological properties of cerebellar granule cells.

Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 06/2010; 30(25):8551-65. DOI: 10.1523/JNEUROSCI.5489-09.2010
Source: PubMed

ABSTRACT In cerebellar granule (CG) cells and many other neurons, A-type potassium currents play an important role in regulating neuronal excitability, firing patterns, and activity-dependent plasticity. Protein biochemistry has identified dipeptidyl peptidase-like protein 6 (DPP6) as an auxiliary subunit of Kv4-based A-type channels and thus a potentially important regulator of neuronal excitability. In this study, we used an RNA interference (RNAi) strategy to examine the role DPP6 plays in forming and shaping the electrophysiological properties of CG cells. DPP6 RNAi delivered by lentiviral vectors effectively disrupts DPP6 protein expression in CG cells. In response to the loss of DPP6, I(SA) peak conductance amplitude is reduced by >85% in parallel with a dramatic reduction in the level of I(SA) channel protein complex found in CG cells. The I(SA) channels remaining in CG cells after suppression of DPP6 show alterations in gating similar to Kv4 channels expressed in heterologous systems without DPP6. In addition to these effects on A-type current, we find that loss of DPP6 has additional effects on input resistance and Na(+) channel conductance that combine with the effects on I(SA) to produce a global change in excitability. Overall, DPP6 expression seems to be critical for the expression of a high-frequency electrophysiological phenotype in CG cells by increasing leak conductance, A-type current levels and kinetics, and Na(+) current amplitude.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal A-type K(+) channels regulate action potential waveform, back-propagation and firing frequency. In hippocampal CA1 interneurons located at the stratum lacunosum-moleculare/radiatum junction (LM/RAD), Kv4.3 mediates A-type K(+) currents and a Kv4 β-subunit of the Kv channel interacting protein (KChIP) family, KChIP1, appears specifically expressed in these cells. However, the functional role of this accessory subunit in A-type K(+) currents and interneuron excitability remains largely unknown. Thus, first we studied KChIP1 and Kv4.3 channel interactions in human embryonic kidney 293 (HEK293) cells and determined that KChIP1 coexpression modulated the biophysical properties of Kv4.3 A-type currents (faster recovery from inactivation, leftward shift of activation curve, faster rise time and slower decay) and this modulation was selectively prevented by KChIP1 short interfering RNA (siRNA) knockdown. Next, we evaluated the effects of KChIP1 down-regulation by siRNA on A-type K(+) currents in LM/RAD interneurons in slice cultures. Recovery from inactivation of A-type K(+) currents was slower after KChIP1 down-regulation but other properties were unchanged. In addition, down-regulation of KChIP1 levels did not affect action potential waveform and firing, but increased firing frequency during suprathreshold depolarizations, indicating that KChIP1 regulates interneuron excitability. The effects of KChIP1 down-regulation were cell-specific since CA1 pyramidal cells that do not express KChIP1 were unaffected. Overall, our findings suggest that KChIP1 interacts with Kv4.3 in LM/RAD interneurons, enabling faster recovery from inactivation of A-type currents and thus promoting stronger inhibitory control of firing during sustained activity.
    Neuroscience 03/2011; 176:173-87. DOI:10.1016/j.neuroscience.2010.11.051 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported increased expression of TLR4 on monocytes in thrombi from patients with acute coronary syndromes (ACS). In mice, myeloid related protein (MRP) 8 and MRP14, cytoplasmic proteins of neutrophils and monocytes, activate Toll-like receptor (TLR) 4 during sepsis. In human ACS, we investigated now whether the pro-inflammatory action of MRPs occurs through TLR4 in monocytes derived from thrombi. Coronary thrombi and peripheral blood of 27 ACS patients were analyzed. CD14(+) monocytes were isolated and incubated with TLR2 ligand PM3SKA, TLR4 ligand lipopolysaccharide (LPS), MRP8, MRP14, or MRP8/14 heterocomplex. Anti-TLR4 antibodies (HTA125) were used to block TLR4 and polymyxin B (PMB) was employed to inhibit endotoxins. Before and after stimulation, the release of TNFα was measured by ELISA and the expression of TLR4 on CD14(+) monocytes was determined by flow cytometry. Further, selected pathways of downstream signaling were analyzed. MRP8 and MRP8/14 increased release of TNFα in cultures of CD14(+) monocytes, more in cells derived from thrombi compared with matched peripheral blood cells (p<0.001). LPS, MRP8, and MRP8/14, but much less PM3SKA and MRP14 alone, stimulated TNFα release, which can be inhibited by HTA125. MRP8/14 enhanced TLR4 expression on monocytes from thrombi (p<0.001), but not on monocytes from peripheral blood of the same patients. In ACS, MRP8 and MRP8/14 complex are specific ligands of TLR4, which induce the release of TNFα and probably other pro-inflammatory agents from monocytes. This specific MRP8/14-dependent pathway with striking similarities to sepsis increasing expression of TLR4 in thrombi appears to be involved in the pathogenesis of coronary occlusion and may represent a novel therapeutic target in ACS.
    Atherosclerosis 06/2011; 218(2):486-92. DOI:10.1016/j.atherosclerosis.2011.06.020 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse partly due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here, we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels.
    Pflügers Archiv - European Journal of Physiology 08/2011; 462(5):631-43. DOI:10.1007/s00424-011-1004-8 · 3.07 Impact Factor
Show more


Available from