Article

Constrained principal component analysis reveals functionally connected load-dependent networks involved in multiple stages of working memory.

Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
Human Brain Mapping (Impact Factor: 6.88). 06/2011; 32(6):856-71. DOI: 10.1002/hbm.21072
Source: PubMed

ABSTRACT Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the neural correlates of age-related differences in the binding of verbal and spatial information utilizing event-related working memory tasks. Twenty-one right handed younger adults and twenty-one right handed older adults performed two versions of a dual task of verbal and spatial working memory. In the unbound dual task version letters and locations were presented simultaneously in separate locations, while in the bound dual task version each letter was paired with a specific location. In order to identify binding-specific differences, mixed-effects ANOVAs were run with the interaction of age and task as the effect of interest. Although older adults performed worse in the bound task than younger adults, there was no significant interaction between task and age on working memory performance. However, interactions of age and task were observed in brain activity analyses. Older adults did not display the greater unbound than bound task activity that younger adults did at the encoding phase in bilateral inferior parietal lobule, right putamen, and globus pallidus as well as at the maintenance phase in the cerebellum. We conclude that the binding of letters and locations in working memory is not as efficient in older adults as it is in younger adults, possibly due to the decline of cognitive control processes that are specific to working memory binding.
    Behavioural brain research 03/2014; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional magnetic resonance imaging can measure distributed and subtle variations in brain responses associated with task performance. However, it is unclear whether the rich variety of responses observed across the brain is functionally meaningful and consistent across individuals. Here, we used a multivariate clustering approach that grouped brain regions into clusters based on the similarity of their task-evoked temporal responses at the individual level, and then established the spatial consistency of these individual clusters at the group level. We observed a stable pseudohierarchy of task-evoked networks in the context of a delayed sequential motor task, where the fractionation of networks was driven by a gradient of involvement in motor sequence preparation versus execution. In line with theories about higher-level cognitive functioning, this gradient evolved in a rostro-caudal manner in the frontal lobe. In addition, parcellations in the cerebellum and basal ganglia matched with known anatomical territories and fiber pathways with the cerebral cortex. These findings demonstrate that subtle variations in brain responses associated with task performance are systematic enough across subjects to define a pseudohierarchy of task-evoked networks. Such networks capture meaningful functional features of brain organization as shaped by a given cognitive context.
    Cerebral Cortex 04/2014; · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals exposed to alcohol during gestation show higher rates of psychopathologies. The hyperresponsivity to stress induced by prenatal alcohol exposure (PAE) may be related to this increased rate of psychopathologies, especially because this population is more likely to be exposed to stressful environments throughout life. However, alcohol-induced changes in the overlapping neurocircuitries that underlie stress and the expression of psychopathologies are not fully understood. Here, we performed a comprehensive analysis of the neural activity within central areas known to play key roles in both emotional and stress regulation. Adult male and female offspring from PAE, pair-fed, and ad libitum-fed control conditions were exposed to chronic mild stress (CMS). Following CMS, the neural activity (c-fos mRNA) of the amygdala, ventral hippocampal formation, medial prefrontal cortex (mPFC), and paraventricular nucleus of hypothalamus (PVN) was assessed in response to an acute stress (elevated plus maze). Our results demonstrate that, overall, PAE decreased neural activity within the amygdala and hippocampal formation in males and increased neural activity within the amygdala and mPFC in females. CMS reduced neural activity within the mPFC and PVN in PAE males, but reduced activity in all areas analyzed in control males. By contrast, CMS reduced neural activity in the mPFC in PAE females and had no effects in control females. Furthermore, the constrained principal component analysis revealed that these patterns of neural activity resulted in differential activation of the functional neural networks in males compared to females, indicating sexually dimorphic effects of PAE and CMS. Importantly, the altered networks of brain activation in PAE animals may underlie the hyperresponsivity to stress and increased psychopathologies observed among individuals prenatally exposed to alcohol.
    Frontiers in Endocrinology 01/2014; 5:5.

Full-text (3 Sources)

Download
32 Downloads
Available from
May 21, 2014