Article

Depletion of Tumor-Associated Macrophages Enhances the Effect of Sorafenib in Metastatic Liver Cancer Models by Antimetastatic and Antiangiogenic Effects

Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory for Carcinogenesis and Cancer Invasion, The Chinese Ministry of Education, Shanghai, P.R. China.
Clinical Cancer Research (Impact Factor: 8.19). 07/2010; 16(13):3420-30. DOI: 10.1158/1078-0432.CCR-09-2904
Source: PubMed

ABSTRACT To investigate the role of macrophages in tumor progression under sorafenib treatment and to explore whether combination of drugs that deplete macrophages improved the antitumor effect of sorafenib.
Tumor growth, lung metastasis, and tumor angiogenesis were observed in HCCLM3-R and SMMC7721, two human hepatocellular carcinoma xenograft nude mouse models, when treated with sorafenib (30 mg/kg daily, n = 6 per group) or a vehicle as control. Macrophage infiltration was measured in the peripheral blood and in sorafenib-treated tumor by immunohistochemistry and flow cytometry with F4/80 antibody and CD11b antibody. The effect of macrophage depletion on tumor angiogenesis and metastasis after sorafenib treatment, using two drug target macrophages, zoledronic acid (ZA) and clodrolip, was measured in the two models of hepatocellular carcinoma.
Although sorafenib significantly inhibited tumor growth and lung metastasis, it induced a significant increase in peripheral recruitment and intratumoral infiltration of F4/80- and CD11b-positive cells, which was accompanied with elevation of colony-stimulating factor-1, stromal-derived factor 1alpha, and vascular endothelial growth factor in the tumor and elevation of plasma colony-stimulating factor-1 and mouse vascular endothelial growth factor in peripheral blood, suggesting the role of macrophages in tumor progression under sorafenib treatment. Depletion of macrophages by clodrolip or ZA in combination with sorafenib significantly inhibited tumor progression, tumor angiogenesis, and lung metastasis compared with mice treated with sorafenib alone. ZA was more effective than clodrolip.
Macrophages may have an important role in tumor progression under sorafenib treatment. ZA is promising when combined with sorafenib to enhance its antitumor effect.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this article was to review the recent literature on potential therapeutic strategies for overcoming resistance to antivascular endothelial growth factor drugs in ovarian cancer. Although clinical benefits of antivascular endothelial growth factor therapy were observed in ovarian cancer treatment trials, this use yielded only modest improvement in progression-free survival and, with the exception of cediranib, no effect on overall survival. Adaptive resistance and escape from antiangiogenesis therapy is likely a multifactorial process, including induction of hypoxia, vascular modulators, and immune response. New drugs targeting the tumor vasculature or other components of the surrounding microenvironment have shown promising results. When to start and end antiangiogenesis therapy and the choice of optimal treatment combinations remain controversial. Further evaluation of personalized novel angiogenesis-based therapy is warranted. Defining the critical interaction of these agents and pathways and the appropriate predictive markers will become an increasingly important objective for effective treatment.
    Current Opinion in Obstetrics and Gynecology 12/2014; 27(1). DOI:10.1097/GCO.0000000000000136 · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiofrequency ablation (RFA) is one of the curative therapies for hepatocellular carcinoma (HCC), however, accelerated progression of residual HCC after incomplete RFA has been reported more frequently. The underlying molecular mechanism of this phenomenon remains to be elucidated. In this study, we used an incomplete RFA orthotopic HCC nude mouse model to study the invasive and metastatic potential of residual cancer as well as the correlated mechanism. The incomplete RFA orthotopic nude mouse models were established using high metastatic potential HCC cell line HCCLM3 and low metastatic potential HCC cell line HepG2, respectively. The changes in cellular morphology, motility, metastasis and epithelial-mesenchymal transition (EMT), and HCC cell molecular markers after in vitro and in vivo incomplete RFA intervention were observed. Pulmonary and intraperitoneal metastasis were observed in an in vivo study. The underlying pro-invasive mechanism of incomplete RFA appeared to be associated with promoting EMT, including down-regulation of E-cadherin and up-regulation of N-cadherin and vimentin. These results were in accordance with the in vitro response of HCC cells to heat intervention. Further studies demonstrated that β-catenin was a pivotal factor during this course and blocking β-catenin reduced metastasis and EMT phenotype changes in heat-treated HCCLM3 cells in vitro. Incomplete RFA enhanced the invasive and metastatic potential of residual cancer, accompanying with EMT-like phenotype changes by activating β-catenin signaling in HCCLM3 cells.
    PLoS ONE 12/2014; 9(12):e115949. DOI:10.1371/journal.pone.0115949 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. In ninety percent of the cases it develops as a result of chronic liver damage and it is thus a typical inflammation-related cancer characterized by the close relation between the tumor microenvironment and tumor cells. The stromal environment consists out of several cell types, including hepatic stellate cells, macrophages and endothelial cells. They are not just active bystanders in the pathogenesis of HCC, but play an important and active role in tumor initiation, progression and metastasis. Furthermore, the tumor itself influences these cells to create a background that is beneficial for sustaining tumor growth. One of the key players is the hepatic stellate cell, which is activated during liver damage and differentiates towards a myofibroblast-like cell. Activated stellate cells are responsible for the deposition of extracellular matrix, increase the production of angiogenic factors and stimulate the recruitment of macrophages. The increase of angiogenic factors (which are secreted by macrophages, tumor cells and activated stellate cells) will induce the formation of new blood vessels, thereby supplying the tumor with more oxygen and nutrients, thus supporting tumor growth and offering a passageway in the circulatory system. In addition, the secretion of chemokines by the tumor cells leads to the recruitment of tumor associated macrophages. These tumor associated macrophages are key actors of cancer-related inflammation, being the main type of inflammatory cells infiltrating the tumor environment and exerting a tumor promoting effect by secreting growth factors, stimulating angiogenesis and influencing the activation of stellate cells. This complex interplay between the several cell types involved in liver cancer emphasizes the need for targeting the tumor stroma in HCC patients.
    01/2014; 7(2):165. DOI:10.4254/wjh.v7.i2.165