Article

DC-HIL/Glycoprotein Nmb Promotes Growth of Melanoma in Mice by Inhibiting the Activation of Tumor-Reactive T Cells

Department of Dermatology, The University of Texas Southwestern Medical Center and Dermatology Section Medical Service, Dallas Veterans Affairs Medical Center, Dallas, Texas 75390-9069, USA.
Cancer Research (Impact Factor: 9.28). 07/2010; 70(14):5778-87. DOI: 10.1158/0008-5472.CAN-09-2538
Source: PubMed

ABSTRACT DC-HIL/glycoprotein nmb (Gpnmb) expressed on antigen-presenting cells attenuates T-cell activation by binding to syndecan-4 (SD-4) on activated T cells. Because DC-HIL/Gpnmb is expressed abundantly by mouse and human melanoma lines, we posited that melanoma-associated DC-HIL/Gpnmb exerts similar inhibitory function on melanoma-reactive T cells. We generated small interfering RNA-transfected B16F10 melanoma cells to completely knock down DC-HIL/Gpnmb expression, with no alteration in cell morphology, melanin synthesis, or MHC class I expression. This knockdown had no effect on B16F10 proliferation in vitro or entry into the cell cycle following growth stimulation, but it markedly reduced the growth of these cells in vivo following their s.c. injection into syngeneic immunocompetent (but not immunodeficient) mice. This reduction in tumor growth was due most likely to an augmented capacity of DC-HIL-knocked down B16F10 cells (compared with controls) to activate melanoma-reactive T cells as documented in vitro and in mice. Whereas DC-HIL knockdown had no effect on susceptibility of melanoma to killing by cytotoxic T cells, blocking SD-4 function enhanced the reactivity of CD8(+) T cells to melanoma-associated antigens on parental B16F10 cells. Using an assay examining the spread to the lung following i.v. injection, DC-HIL-knocked down cells produced lung foci at similar numbers compared with that produced by control cells, but the size of the former foci was significantly smaller than the latter. We conclude that DC-HIL/Gpnmb confers upon melanoma the ability to downregulate the activation of melanoma-reactive T cells, thereby allowing melanoma to evade immunologic recognition and destruction. As such, the DC-HIL/SD-4 pathway is a potentially useful target for antimelanoma immunotherapy.

Download full-text

Full-text

Available from: Jin-Sung Chung, Jun 29, 2015
1 Follower
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of tumor-associated macrophages (TAMs) in melanomas is correlated with a poor clinical prognosis. However, there is limited information on the characteristics and biological activities of human TAMs in melanomas. In this study, we developed an in vitro method to differentiate human monocytes to macrophages using modified melanoma-conditioned medium (MCM). We demonstrate that factors from MCM-induced macrophages (MCMI-Mφ) express both M1-Mφ and M2-Mφ markers and inhibit melanoma-specific T-cell proliferation. Furthermore, microarray analyses reveal that the majority of genes up-regulated in MCMI-Mφ are associated with tumor invasion. The most strikingly up-regulated genes are CCL2 and MMP-9. Consistent with this, blockade of both CCL-2 and MMPs diminish MCMI-Mφ-induced melanoma invasion. Finally, we demonstrated that both MCMI-Mφ and in vivo TAMs express the pro-invasive, melanoma-associated gene, glycoprotein non-metastatic melanoma protein B. Our study provides a framework for understanding the mechanisms of cross-talk between TAMs and melanoma cells within the tumor microenvironment.
    Pigment Cell & Melanoma Research 04/2012; 25(4):493-505. DOI:10.1111/j.1755-148X.2012.01005.x · 5.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor receptors comprise a family of four evolutionarily conserved transmembrane proteins (FGFR1, FGFR2, FGFR3 and FGFR4) known to be critical for the normal development of multiple organ systems. In this review we will primarily focus upon the role of FGF/FGFR signaling as it influences the development of the craniofacial skeleton. Signaling by FGF receptors is regulated by the tissue-specific expression of FGFR isoforms, receptor subtype specific fibroblast growth factors and heparin sulfate proteoglycans. Signaling can also be limited by the expression of endogenous inhibitors. Gain-of-function mutations in FGFRs are associated with a series of congenital abnormality syndromes referred to as the craniosynostosis syndromes. Craniosynostosis is the clinical condition of premature cranial bone fusion and patients who carry craniosynostosis syndrome-associated mutations in FGFRs commonly have abnormalities of the skull vault in the form of craniosynostosis. Patients may also have abnormalities in the facial skeleton, vertebrae and digits. In this review we will discuss recent in vitro and in vivo studies investigating biologic mechanisms by which signaling through FGFRs influences skeletal development and can lead to craniosynostosis.
    Critical Reviews in Eukaryotic Gene Expression 01/2010; 20(4):295-311. DOI:10.1615/CritRevEukarGeneExpr.v20.i4.20 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycoprotein non-metastatic melanoma protein B (GPNMB)/Osteoactivin (OA) is a transmembrane protein expressed in approximately 40-75% of breast cancers. GPNMB/OA promotes the migration, invasion and metastasis of breast cancer cells; it is commonly expressed in basal/triple-negative breast tumors and is associated with shorter recurrence-free and overall survival times in patients with breast cancer. Thus, GPNMB/OA represents an attractive target for therapeutic intervention in breast cancer; however, little is known about the functions of GPNMB/OA within the primary tumor microenvironment. We have employed mouse and human breast cancer cells to investigate the effects of GPNMB/OA on tumor growth and angiogenesis. GPNMB/OA-expressing tumors display elevated endothelial recruitment and reduced apoptosis when compared to vector control-derived tumors. Primary human breast cancers characterized by high vascular density also display elevated levels of GPNMB/OA when compared to those with low vascular density. Using immunoblot and ELISA assays, we demonstrate the GPNMB/OA ectodomain is shed from the surface of breast cancer cells. Transient siRNA-mediated knockdown studies of known sheddases identified ADAM10 as the protease responsible for GPNMB/OA processing. Finally, we demonstrate that the shed extracellular domain (ECD) of GPNMB/OA can promote endothelial migration in vitro. GPNMB/OA expression promotes tumor growth, which is associated with enhanced endothelial recruitment. We identify ADAM10 as a sheddase capable of releasing the GPNMB/OA ectodomain from the surface of breast cancer cells, which induces endothelial cell migration. Thus, ectodomain shedding may serve as a novel mechanism by which GPNMB/OA promotes angiogenesis in breast cancer.
    PLoS ONE 08/2010; 5(8):e12093. DOI:10.1371/journal.pone.0012093 · 3.53 Impact Factor

Questions & Answers about this publication