Article

Neural correlates of the contextual interference effect in motor learning: a transcranial magnetic stimulation investigation.

Division of Biokinesiology and Physical Therapy, School of Dentistry, University of Southern California, Los Angeles, CA, USA.
Journal of Motor Behavior (Impact Factor: 1.04). 07/2010; 42(4):223-32. DOI: 10.1080/00222895.2010.492720
Source: PubMed

ABSTRACT The authors applied transcranial magnetic stimulation (TMS) to investigate the causal role of the primary motor cortex (M1) for the contextual-interference effect in motor learning. Previous work using a nonfocal TMS coil suggested a casual role for M1 during high-interference practice conditions, but this hypothesis has not yet been proven. In the 1st experiment, participants practiced 3 rapid elbow flexion-extension tasks in either a blocked or random order, with learning assessed by a delayed retention test. TMS was delivered immediately after feedback during practice using a circular coil, centered over the contralateral M1. Each participant practiced with 1 of 3 TMS conditions: no TMS, real TMS, or sham TMS. Although no significant differences were observed between groups during acquisition, retention of the random group was better than the blocked group. The learning benefits of random practice were attenuated in the real-TMS condition, but not in the sham-TMS or no-TMS conditions. In the second experiment, the authors studied the effects of suprathreshold TMS and subthreshold TMS over M1, lateral premotor cortex, and peripheral arm stimulation using a focal figure-8 coil on motor learning under random practice conditions. The authors found that only suprathreshold TMS on M1 produced significant disruption of retention compared to the other stimulation conditions. Results suggest that a high-threshold neuronal population within M1 is causally important for enhanced retention following random, but not block, practice. Results also support the early intertrial interval as a critical period of M1 activity during practice. Overall, these results suggest neural circuits within M1 contribute to motor learning processing that depends on learners' training experience. Results contribute to knowledge of the critical and specific role that M1 plays in generating a learning advantage following high-interference practice conditions.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contextual interference (CI) effect is a robust phenomenon in the (motor) skill learning literature. However, CI has yielded mixed results in complex task learning. The current study addressed whether the CI effect is generalizable to bimanual skill learning, with a focus on the temporal evolution of memory processes. In contrast to previous studies, an extensive training schedule, distributed across multiple days of practice, was provided. Participants practiced three frequency ratios across three practice days following either a blocked or random practice schedule. During the acquisition phase, better overall performance for the blocked practice group was observed, but this difference diminished as practice progressed. At immediate and delayed retention, the random practice group outperformed the blocked practice group, except for the most difficult frequency ratio. Our main finding is that the random practice group showed superior performance persistence over a one week time interval in all three frequency ratios compared to the blocked practice group. This study contributes to our understanding of learning, consolidation and memory of complex motor skills, which helps optimizing training protocols in future studies and rehabilitation settings.
    PLoS ONE 06/2014; 9(6):e100906. DOI:10.1371/journal.pone.0100906 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications.
    Behavioural brain research 11/2011; 228(1):219-31. DOI:10.1016/j.bbr.2011.11.028 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain-computer interfaces (BCIs) provide a defined link between neural activity and devices, allowing a detailed study of the neural adaptive responses generating behavioral output. We trained monkeys to perform two-dimensional center-out movements of a computer cursor using a BCI. We then applied a perturbation by randomly selecting a subset of the recorded units and rotating their directional contributions to cursor movement by a consistent angle. Globally, this perturbation mimics a visuomotor transformation, and in the first part of this article we characterize the psychophysical indications of motor adaptation and compare them with known results from adaptation of natural reaching movements. Locally, however, only a subset of the neurons in the population actually contributes to error, allowing us to probe for signatures of neural adaptation that might be specific to the subset of neurons we perturbed. One compensation strategy would be to selectively adapt the subset of cells responsible for the error. An alternate strategy would be to globally adapt the entire population to correct the error. Using a recently developed mathematical technique that allows us to differentiate these two mechanisms, we found evidence of both strategies in the neural responses. The dominant strategy we observed was global, accounting for ∼86% of the total error reduction. The remaining 14% came from local changes in the tuning functions of the perturbed units. Interestingly, these local changes were specific to the details of the applied rotation: in particular, changes in the depth of tuning were only observed when the percentage of perturbed cells was small. These results imply that there may be constraints on the network's adaptive capabilities, at least for perturbations lasting only a few hundreds of trials.
    Journal of Neurophysiology 04/2012; 108(2):624-44. DOI:10.1152/jn.00371.2011 · 3.04 Impact Factor

Full-text

Download
33 Downloads
Available from
Jul 12, 2014