Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder.

Departamento de Investigación del Centro Estatal de Salud Mental, Querétaro, México.
Journal of psychiatry & neuroscience: JPN (Impact Factor: 7.49). 07/2010; 35(4):238-46.
Source: PubMed

ABSTRACT Magnetic resonance imaging (MRI) studies have shown decreased caudate volumes in individuals with attention deficit hyperactivity disorder (ADHD). However, most of these studies have been carried out in male children. Very little research has been done in adults, and the results obtained in children are difficult to extrapolate to adults. We sought to compare the volume of the caudate of adults with ADHD with that of healthy controls; we also compared these volumes between men and women.
We performed an MRI scan on 20 adults with ADHD (10 men and 10 women) aged 25-35 years and 20 healthy controls matched by age and sex. We used voxel-based morphometry with the DARTEL algorithm for image analyses. We used the specifically designed Friederichsen, Almeida, Serrano, Cortes Test (FASCT) to measure the severity of ADHD; both the self-reported (FASCT-SR) and the observer (FASCT-O) versions were used.
The statistical parametric map showed a smaller region with low grey matter volume and a smaller concentration of grey matter in this region of the right caudate in ADHD patients than in health controls, both in the entire sample and within each sex. There was a significant correlation between the volume of this region of the caudate with the number of DSM IV-TR criteria, as well as with the total scores and most of the factors of the FASCT-SR and FASCT-O scales. A separate correlation analysis by sex gave similar results. Limitations: The study design was cross-sectional.
The region of the right caudate with low grey matter volume was smaller in adults with ADHD in both sexes and was correlated with ADHD severity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Children with attention-deficit/hyperactivity disorder (ADHD) have smaller volumes of total brain matter and subcortical regions, but it is unclear whether these represent delayed maturation or persist into adulthood. We performed a structural MRI study in 119 adult ADHD patients and 107 controls and investigated total gray and white matter and volumes of accumbens, caudate, globus pallidus, putamen, thalamus, amygdala and hippocampus. Additionally, we investigated effects of gender, stimulant treatment and history of major depression (MDD). There was no main effect of ADHD on the volumetric measures, nor was any effect observed in a secondary voxel-based morphometry (VBM) analysis of the entire brain. However, in the volumetric analysis a significant gender by diagnosis interaction was found for caudate volume. Male patients showed reduced right caudate volume compared to male controls, and caudate volume correlated with hyperactive/impulsive symptoms. Furthermore, patients using stimulant treatment had a smaller right hippocampus volume compared to medication-naïve patients and controls. ADHD patients with previous MDD showed smaller hippocampus volume compared to ADHD patients with no MDD. While these data were obtained in a cross-sectional sample and need to be replicated in a longitudinal study, the findings suggest that developmental brain differences in ADHD largely normalize in adulthood. Reduced caudate volume in male patients may point to distinct neurobiological deficits underlying ADHD in the two genders. Smaller hippocampus volume in ADHD patients with previous MDD is consistent with neurobiological alterations observed in MDD.
    European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 12/2013; · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication.
    PLoS ONE 10/2014; 9(10):e110199. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methylphenidate (MPH) is the first choice of medical treatment for attention-deficit/hyperactivity disorder (ADHD). Its mechanism of action is to inhibit the reuptake of dopamine and noradrenaline mainly in the region of the striatum. It has been estimated that 10-30 % of patients with ADHD do not respond adequately to MPH. The aim of this study was to evaluate whether striatal differences exist between good and poor responders to MPH. The sample included 27 treatment-naïve children with ADHD between the ages of 6 and 14. MPH administration started 1 day after the MRI acquisition. After a month, psychiatrists established the good or poor response to treatment according to clinical criteria. MRI images were analyzed using a technique based on regions of interest applied specifically to the caudate and accumbens nuclei. Sixteen patients showed good response to MPH and 11 a poor one. Regions of interest analysis showed that good responders had a higher concentration of gray matter in the head of both caudate nuclei and the right nucleus accumbens. Furthermore, a significant correlation was found between caudate and accumbens nuclei volume and the Conners' Parent Rating Scale and Continuous Performance Test improvement. These results support the hypothesis of the involvement of the caudate and accumbens nuclei in MPH response and in ADHD pathophysiology.
    European Child & Adolescent Psychiatry 01/2014; · 3.70 Impact Factor


Available from