Article

Synthesis of stimuli-responsive microgels for in vitro release of diclofenac diethyl ammonium

Dipartimento di Scienze Farmaceutiche, Università della Calabria, Edificio Polifunzionale, Rende (CS) 87036, Italia.
Journal of Biomaterials Science Polymer Edition (Impact Factor: 1.36). 01/2011; 22(4-6):823-44. DOI: 10.1163/092050610X496279
Source: PubMed

ABSTRACT Thermal and dual stimuli-responsive microspheres (pH and temperature) were prepared by free radical polymerization of methacrylate bovine serum albumin (BSA-MA) as cross-linker and sodium methacrylate (NaMA) and/or N-isopropylacrylamide (NIPAAm), as hydrophilic/pH-sensitive and thermo-responsive monomers, respectively. Microgels were characterized by infrared spectroscopy, morphological analysis, particle size distribution and determination of swelling properties. The network density and the shape of the microgels were found to depend on the concentration of the reactive species in the polymerization feed. Thermal analyses were performed to determine lower critical solution temperature values, which become close to the body temperature by increasing the content of the hydrophilic moieties in the network. In order to test the preformed materials as drug carriers, in vitro release studies of Diclofenac diethyl ammonium salt were performed. For all the co-polymers, a predominant drug release in the collapsed state was observed, while below the microgel transition temperature, a drug release through the swollen network occurs. The data recorded during the release tests demonstrated that the pH of the surrounding environment influences the drug release more than the temperature of the imbibing medium.

0 Followers
 · 
97 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermo-responsive polysaccharidic hydrogels were designed and synthesized by a free radical induced grafting procedure. Chitosan was chosen as biopolymer to impart biocompatibility and biodegradability to the macromolecular systems, while N-isopropylacrylamide (NIPAAm) was selected as co-monomer responsive for the thermo-sensitive properties. Ammonium persulfate was the initiator system and different polymeric networks have been synthesized by modulating the amount of NIPAAm in the polymerization feed. The resulting hydrogels were proposed as drug delivery devices and their performance was evaluated by using Diclofenac sodium salt as a model drug. Hydrogels were carefully characterized by FT-IR spectrophotometry, calorimetric analyses and swelling behavior in a temperature range of 15-45°C. Finally, to verify the suitability of these hydrogels as thermo-responsive devices, the drug release profiles were studied performing in vitro experiments around the swelling-shrinking transition temperatures of the macromolecular systems.
    Pharmaceutical Development and Technology 12/2011; 18(5). DOI:10.3109/10837450.2011.644298 · 1.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multi-walled carbon nanotubes were chemically functionalized with methacrylic acid and methacrylated bovine serum albumin by free radical grafting reaction to obtain novel nanocomposites. The nanotubes were synthesized by aerosol-assisted chemical vapor deposition, and then the monomers were directly grafted by the action of hydrogen peroxide/ascorbic acid redox pair which allows operating in water-compatible and eco-friendly environment without the generation of any toxic reaction by-product. A multi-technique approach was used to evaluate the effectiveness of the grafting process employing Fourier transform infrared, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analyses. Considering the high importance of methacrylate polymers and bovine serum albumin, the proposed nanocomposites could be of great applicability in biomedical and pharmaceutical fields.
    Colloid and Polymer Science 03/2013; 291(3-3):699-708. DOI:10.1007/s00396-012-2779-7 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The osteointegration of the orthopaedic implants could improve the biocompatibility and the life span of the implants. The ideal implants should be made by materials easily colonized by bone-forming cells (osteoblasts), which can synthesize new bone matrix. Some implant materials are not often compatible with osteoblasts, but rather they promote the formation of soft connective tissue. There are a number of important reasons to explore the potential for the application of nanomaterials in orthopedic surgery. The use of nanotechnology has been tested on a wide range of materials (such as metals, ceramics, polymers, and composites), where either nanostructured surface features or constituent nanomaterials (including grains, fibers, or particles with at least one dimension from 1 to 100 nm) have been utilized. These nanomaterials have demonstrated superior properties compared with their conventional (or micron structured) counterparts, due to their distinctive nanoscale features and the novel physical properties that ensue. Aim of this paper is to explore how nanotechnology can really improve the future of orthopedic implants and scaffolds for bone and cartilage defects. Here we are showing the most relevant works about the use of nanotechnologies for the treatment of osteocondral defects.
Show more