Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.

Department of Energy, Great Lakes Bioenergy Research Center, Michigan State University, E. Lansing, Michigan 48824, USA.
Biotechnology and Bioengineering (Impact Factor: 4.16). 08/2010; 106(5):707-20. DOI: 10.1002/bit.22741
Source: PubMed

ABSTRACT The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/- Multifect Xylanase, and Spezyme CP +/- Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia-fiber expansion (AFEX) pretreated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50 degrees C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo-beta1,4-glucanase 1, 14% (5%) beta-glucosidase, 22% (34%) endo-beta1,4-xylanase 3, and 5% (17%) beta-xylosidase in 48 h at a protein loading of 15 mg/g glucan. Comparison of two AFEX-treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 microm) makes a large difference in total digestibility. The assay platform and the optimized "core" set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of "accessory" proteins for development of superior enzyme mixtures for biomass conversion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellula
    Biotechnology for Biofuels 01/2014; 7(1):135. DOI:10.1186/s13068-014-0135-5 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and efficient biomass hydrolysis. Several cellulolytic enzymes purified from T. cellulolyticus were characterized in earlier studies, but the core enzymes critical for hydrolysis of lignocellulosic biomass remain unknown.
    Biotechnology for Biofuels 01/2014; 7(1):151. DOI:10.1186/s13068-014-0151-5 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei. The S. thermophile extracts were fractionated and an enhancing factor identified as endo-β1,4- glucanase (StCel5A or EG2) of subfamily 5 of Glycosyl Hydrolase family 5 (GH5_5). In multi-component optimization experiments using a standard set of enzymes and either StCel5A or the ortholog from T. reesei (TrCel5A), reactions containing StCel5A yielded more Glc and Xyl. In a five-component optimization experiment (i.e., varying four core enzymes and the source of Cel5A), the optimal proportions for TrCel5A vs. StCel5A were similar for Glc yields, but markedly different for Xyl yields. Both enzymes were active on lichenan, glucomannan, and oat β-glucan; however, StCel5A but not TrCel5A was also active on β1,4-mannan, two types of galactomannan, and β1,4-xylan. Phylogenetically, fungal enzymes in GH5_5 sorted into two clades, with StCel5A and TrCel5A belonging to different clades. Structural differences with the potential to account for the differences in performance were deduced based on the known structure of TrCel5A and a homology-based model of StCel5A, including a loop near the active site of TrCel5A and the presence of four additional Trp residues in the active cleft of StCel5A. The results indicate that superior biomass-degrading enzymes can be identified by exploring taxonomic diversity combined with assays in the context of realistic enzyme combinations and realistic substrates. Substrate range may be a key factor contributing to superior performance within GH5_5.
    PLoS ONE 10/2014; 9(10):e109885. DOI:10.1371/journal.pone.0109885 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014