Article

Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.

Department of Energy, Great Lakes Bioenergy Research Center, Michigan State University, E. Lansing, Michigan 48824, USA.
Biotechnology and Bioengineering (Impact Factor: 3.65). 08/2010; 106(5):707-20. DOI: 10.1002/bit.22741
Source: PubMed

ABSTRACT The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for biomass conversion, we have developed a platform, called GENPLAT, that uses robotic liquid handling and statistically valid experimental design to analyze synthetic enzyme mixtures. Commercial enzymes (Accellerase 1000 +/- Multifect Xylanase, and Spezyme CP +/- Novozyme 188) were used to test the system and serve as comparative benchmarks. Using ammonia-fiber expansion (AFEX) pretreated corn stover ground to 0.5 mm and a glucan loading of 0.2%, an enzyme loading of 15 mg protein/g glucan, and 48 h digestion at 50 degrees C, commercial enzymes released 53% and 41% of the available glucose and xylose, respectively. Mixtures of three, five, and six pure enzymes of Trichoderma species, expressed in Pichia pastoris, were systematically optimized. Statistical models were developed for the optimization of glucose alone, xylose alone, and the average of glucose + xylose for two digestion durations, 24 and 48 h. The resulting models were statistically significant (P < 0.0001) and indicated an optimum composition for glucose release (values for optimized xylose release are in parentheses) of 29% (5%) cellobiohydrolase 1, 5% (14%) cellobiohydrolase 2, 25% (25%) endo-beta1,4-glucanase 1, 14% (5%) beta-glucosidase, 22% (34%) endo-beta1,4-xylanase 3, and 5% (17%) beta-xylosidase in 48 h at a protein loading of 15 mg/g glucan. Comparison of two AFEX-treated corn stover preparations ground to different particle sizes indicated that particle size (100 vs. 500 microm) makes a large difference in total digestibility. The assay platform and the optimized "core" set together provide a starting point for the rapid testing and optimization of alternate core enzymes from other microbial and recombinant sources as well as for the testing of "accessory" proteins for development of superior enzyme mixtures for biomass conversion.

0 Bookmarks
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many different feedstocks are under consideration for the practical production of biofuels from lignocellulosic materials. The best choice under any particular combination of economic, agronomic, and environmental conditions depends on multiple factors. The use of old fields, restored prairie, or marginal lands to grow biofuel feedstocks offers several potential benefits including minimal agronomic inputs, reduced competition with food production, and high biodiversity. However, a major component of such landscapes is often herbaceous dicotyledonous plants, also known as forbs. The potential and obstacles of using forbs as biofuel feedstocks compared to the more frequently considered grasses and woody plants are poorly understood. The factors that contribute to the yield of fermentable sugars from four representative forbs were studied in comparison with corn stover. The forbs chosen for the study were lamb's quarters (Chenopodium album), goldenrod (Solidago canadensis), milkweed (Asclepias syriaca), and Queen Anne's lace (Daucus carota). These plants are taxonomically diverse, widely distributed in northern temperate regions including the continental United States, and are weedy but not invasive. All of the forbs had lower total glucose (Glc) content from all sources (cell walls, sucrose, starch, glucosides, and free Glc) compared to corn stover (range 16.2 to 23.0% on a dry weight basis compared to 39.2% for corn stover). When digested with commercial enzyme mixtures after alkaline pretreatment, yields of Glc as a percentage of total Glc were lower for the forbs compared to corn stover. Enzyme inhibition by water-extractable compounds was not a significant contributor to the lower yields. Based on experiments with optimized cocktails of pure glycosyl hydrolases, enzyme imbalance probably accounted for much of the lower yields. Addition of xyloglucanase and alpha-xylosidase, two enzymes targeting Glc-containing polysaccharides that are more abundant in dicotyledonous plants compared to grasses, enhanced Glc yields from lamb's quarters, but Glc yields were still lower than from corn stover. The potential utilization of forb-rich plant communities as biofuel feedstocks must take into account their lower Glc content compared to grasses such as corn stover. Furthermore, new enzyme mixtures tailored to the different cell wall composition of forbs will have to be developed.
    Biotechnology for Biofuels 04/2014; 7(1):52. · 5.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sorghum (Sorghum bicolor (L.) Moench) biomass considered as one of the potential renewable sources of energy for economic development and environmental sustainability, owing to its wide adaptability, C4 photosynthetic pathway and high nitrogen and water use efficiency (WUE). This plant could be effectively utilized as a source of food (grains), fodder (stem) and also as feedstock (lignin, cellulose and hemicellulose) for production of industrial solvents including biofuels. Genetic manipulation of sorghum has resulted in development of improved cultivars of sweet-, high-biomass and low lignin sorghums (bmr), etc. with increased productivity, palatability, along with reduced recalcitrance and enhanced tolerance to abiotic stresses, which can meet the diverse needs of population. This article elaborates on recent developments in sorghum research towards conversion of cellulose and hemicellulosic components of sorghum biomass to biofuel and value added biochemicals by developing affordable processes at different sectorial levels.
    Biofuels. 12/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optimal enzyme mixtures of six Trichoderma reesei enzymes and five thermostable enzyme components were developed for the hydrolysis of hydrothermally pretreated wheat straw, alkaline oxidised sugar cane bagasse and steam-exploded bagasse by statistically designed experiments. Preliminary studies to narrow down the optimization parameters showed that a cellobiohydrolase/endoglucanase (CBH/EG) ratio of 4:1 or higher of thermostable enzymes gave the maximal CBH-EG synergy in the hydrolysis of hydrothermally pretreated wheat straw. The composition of optimal enzyme mixtures depended clearly on the substrate and on the enzyme system studied. The optimal enzyme mixture of thermostable enzymes was dominated by Cel7A and required a relatively high amount of xylanase, whereas with T. reesei enzymes, the high proportion of Cel7B appeared to provide the required xylanase activity. The main effect of the pretreatment method was that the required proportion of xylanase was higher and the proportion of Cel7A lower in the optimized mixture for hydrolysis of alkaline oxidised bagasse than steam-exploded bagasse. In prolonged hydrolyses, less Cel7A was generally required in the optimal mixture. Five-component mixtures of thermostable enzymes showed comparable hydrolysis yields to those of commercial enzyme mixtures.
    Applied biochemistry and biotechnology 04/2014; · 1.94 Impact Factor

Full-text (2 Sources)

View
15 Downloads
Available from
Jun 2, 2014