Androgens Induce Functional CXCR4 through ERG Factor Expression in TMPRSS2-ERG Fusion-Positive Prostate Cancer Cells

Department of Urology, Wayne State University School of Medicine, Detroit, MI, USA.
Translational oncology (Impact Factor: 3.4). 06/2010; 3(3):195-203. DOI: 10.1593/tlo.09328
Source: PubMed

ABSTRACT TMPRSS2-ERG fusion transcripts have been shown to be expressed in a majority of prostate cancer (PC) patients because of chromosomal translocations or deletions involving the TMPRSS2 gene promoter and the ERG gene coding sequence. These alterations cause androgen-dependent ERG transcription factor expression in PC patients. We and others have shown that chemokine receptor CXCR4 expression is upregulated in PC tumor cells, and its ligand, CXCL12, is expressed in bone stromal cells. The CXCL12/CXCR4 axis functions in PC progression to enhance invasion and metastasis. To address the regulation of CXCR4 expression, we identified several putative ERG consensus-binding sites in the promoter region of CXCR4. We hypothesized that androgen-dependent regulation of the ERG transcription factor could induce CXCR4 expression in PC cells. Results of the current study show that 1) prostate tumor cells coexpress higher ERG and CXCR4 compared with benign tissue, 2) CXCR4 expression is increased in the TMPRSS2-ERG fusion-positive cell line, 3) ERG transcription factor binds to the CXCR4 gene promoter, 4) synthetic androgen (R1881) upregulates both ERG and CXCR4 in TMPRSS2-ERG fusion-positive VCaP cells, 5) small interfering RNA-mediated down-regulation of ERG resulted in the loss of androgen-dependent regulation of CXCR4 expression in VCaP cells, and 6) R1881-activated TMPRSS2-ERG expression functionally activates CXCR4 in VCaP cells. These findings provide a link between TMPRSS2-ERG translocations and enhanced metastasis of tumor cells through CXCR4 function in PC cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomic studies have proven to provide a unique perspective of the cellular dysfunction developing as a result of prostate cancer (PCa) onset and progression, facilitated primarily by mass spectrometry (MS) and nuclear magnetic resonance (NMR) techniques. PCa develops as an androgen-dependent disease with the expression of the androgen receptor (AR), where patient treatment typically involves androgen ablation therapy. In response, it is theorized that PCa transforms to an androgen-hypersensitive or androgen-independent state, where treatment options are severely reduced. Under the hypothesis that AR stimulation increases the aggressivity of pre-existing PCa, NMR spectroscopy was utilized in the delineation of the metabonomic response of an androgen-dependent PCa cell line (LnCAP) as a result of AR activation. Metabolite profiles were determined after 12, 24, and 48 h of exposure to methyltrienolone (R1881), an AR agonist. Principal components analysis revealed the relative myo-inositol and phosphocholine levels were severely altered after androgen treatment. Furthermore, univariate analysis revealed multiple metabolic perturbations in response to R1881 exposure, including amino acid, choline, the phosphocholine/glycerophosphocholine ratio, and UDP-coupled sugar metabolism, which are consistent with reported measurements between normal and PCa samples. These results suggest that androgen-sensitive PCa may transform to an aggressive phenotype upon AR activation.
    Metabolomics 12/2012; 8(6):1026-1036. DOI:10.1007/s11306-012-0398-4 · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear. Methods Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12. Results Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR-mediated transcription. Moreover, androgen-mediated cell motility correlated positively with the co-localization of CXCR4 and CXCR7 receptors, suggesting that cell migration may be linked to functional CXCR4/CXCR7 heterodimers. Lastly, CXCL12-mediated cell motility was CXCR7-dependent, with CXCR7 expression required for optimal expression of CXCR4 protein. Conclusions Overall, our results suggest that inhibition of CXCR7 function might decrease the metastatic potential of organ-confined prostate cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1201-5) contains supplementary material, which is available to authorized users.
    BMC Cancer 03/2015; 15. DOI:10.1186/s12885-015-1201-5 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic rearrangement and overexpression of the ERG oncogene (also known as v-ets avian erythroblastosis virus E26 oncogene homolog) is estimated to occur at a rate of 40-50% in prostate cancer. Early evidence suggests that ERG overexpression may be associated with disease progression, and the utilization of ERG levels as a biomarker for prostate cancer is being strongly considered. However, the evidence is incomplete because it relies on studies that primarily focused on men of European ancestry, giving little consideration to African-American men even though African-American men bear a greater disease burden in the form of significantly greater incidence and worse outcomes. In this perspective article we bring to light the issue that the potential use of ERG expression as a biomarker is yet to be solidly established and may have limited utility or varied applicably for African-American men as compared with European-American men.
    Personalized Medicine 06/2014; 11(4):409-412. DOI:10.2217/pme.14.26 · 1.13 Impact Factor


Available from

Similar Publications