The CXC chemokine-degrading protease SpyCep of Streptococcus pyogenes promotes its uptake into endothelial cells.

Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2010; 285(36):27798-805. DOI: 10.1074/jbc.M109.098053
Source: PubMed

ABSTRACT Streptococcus pyogenes expresses the LPXTG motif-containing cell envelope serine protease SpyCep (also called ScpC, PrtS) that degrades and inactivates the major chemoattractant interleukin 8 (IL-8), thereby impairing host neutrophil recruitment. In this study, we identified a novel function of SpyCep: the ability to mediate uptake into primary human endothelial cells. SpyCep triggered its uptake into endothelial cells but not into human epithelial cells originating from pharynx or lung, indicating an endothelial cell-specific uptake mechanism. SpyCep mediated cellular invasion by an endosomal/lysosomal pathway distinct from the caveolae-mediated invasion pathway of S. pyogenes. Recombinant expression and purification of proteolytically active SpyCep and a series of subfragments allowed functional dissection of the domains responsible for endothelial cell invasion and IL-8 degradation. The N-terminal PR domain was sufficient to mediate endothelial cell invasion, whereas for IL-8-degrading activity, the protease domain and the flanking A domain were required. A polyclonal rabbit serum raised against the recombinant protease efficiently blocked the invasion-mediating activity of SpyCep but not its proteolytic function, further indicating that SpyCep-mediated internalization is independent from its enzymatic activity. SpyCep may thus specifically mediate its own uptake as secreted protein into human endothelial cells.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SpyCEP-mediated chemokine degradation translates into more efficient spreading and increased severity of invasive Group A Streptococcus (GAS) infections, due to impaired neutrophil recruitment to the site of infection. SpyCEP is markedly up-regulated in invasive as compared to colonizing GAS isolates raising the question whether SpyCEP expression hinders bacterial attachment and thus colonization of the host. To address this question we used a molecular approach involving the use of homologous GAS strains either expressing or not SpyCEP or expressing an enzymatically inactive variant of SpyCEP. We found that expression of enzymatically functional SpyCEP lowered GAS adherence and invasion potential toward various epithelial and endothelial cells. SpyCEP also blunted biofilm formation capacity. Our data indicate that expression of SpyCEP decreases colonization and thus might be detrimental for the spreading of GAS.
    Frontiers in Microbiology 07/2014; 5:339. DOI:10.3389/fmicb.2014.00339 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Altering zinc bioavailability to bacterial pathogens is a key component of host innate immunity. Thus, the ability to sense and adapt to the alterations in zinc concentrations is critical for bacterial survival and pathogenesis. To understand the adaptive responses of group A Streptococcus (GAS) to zinc limitation and its regulation by AdcR, we characterized gene regulation by AdcR. AdcR regulates the expression of 70 genes involved in zinc acquisition and virulence. Zinc-bound AdcR interacts with operator sequences in the negatively regulated promoters and mediates differential regulation of target genes in response to zinc deficiency. Genes involved in zinc mobilization and conservation are derepressed during mild zinc deficiency, whereas the energy-dependent zinc importers are upregulated during severe zinc deficiency. Further, we demonstrated that transcription activation by AdcR occurs by direct binding to the promoter. However, the repression and activation by AdcR is mediated by its interactions with two distinct operator sequences. Finally, mutational analysis of the metal ligands of AdcR caused impaired DNA binding and attenuated virulence, indicating that zinc sensing by AdcR is critical for GAS pathogenesis. Together, we demonstrate that AdcR regulates GAS adaptive responses to zinc limitation and identify molecular components required for GAS survival during zinc deficiency. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 12/2014; 43(1). DOI:10.1093/nar/gku1304 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Group A Streptococcus (GAS) is a human pathogen causing a wide range of mild to severe and life-threatening diseases. The GAS M1 protein is a major virulence factor promoting GAS invasiveness and resistance to host innate immune clearance. M1 displays an irregular coiled-coil structure, including the B-repeats that bind fibrinogen. Previously, we found that B-repeat stabilisation generates an idealised version of M1 (M1*) characterised by decreased fibrinogen binding in vitro. To extend these findings based on a soluble truncated version of M1, we now studied the importance of the B-repeat coiled-coil irregularities in full length M1 and M1* expressed in live GAS and tested whether the modulation of M1-fibrinogen interactions would open up novel therapeutic approaches. We found that altering either the M1 structure on the GAS cell surface or removing its target host protein fibrinogen blunted GAS virulence. GAS expressing M1* showed an impaired ability to adhere to and to invade human endothelial cells, was more readily killed by whole blood or neutrophils and most importantly was less virulent in a murine necrotising fasciitis model. M1-mediated virulence of wild-type GAS was strictly dependent on the presence and concentration of fibrinogen complementing our finding that M1-fibrinogen interactions are crucial for GAS virulence. Consistently blocking M1-fibrinogen interactions by fragment D reduced GAS virulence in vitro and in vivo. This supports our conclusion that M1-fibrinogen interactions are crucial for GAS virulence and that interference may open up novel complementary treatment options for GAS infections caused by the leading invasive GAS strain M1.
    Journal of Molecular Medicine 02/2013; 91(7). DOI:10.1007/s00109-013-1012-6 · 4.74 Impact Factor


Available from
Jun 3, 2014