Article

Chitin synthesis and fungal pathogenesis.

Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
Current opinion in microbiology (Impact Factor: 7.22). 08/2010; 13(4):416-23. DOI: 10.1016/j.mib.2010.05.002
Source: PubMed

ABSTRACT Chitin is an essential part of the carbohydrate skeleton of the fungal cell wall and is a molecule that is not represented in humans and other vertebrates. Complex regulatory mechanisms enable chitin to be positioned at specific sites throughout the cell cycle to maintain the overall strength of the wall and enable rapid, life-saving modifications to be made under cell wall stress conditions. Chitin has also recently emerged as a significant player in the activation and attenuation of immune responses to fungi and other chitin-containing parasites. This review summarises latest advances in the analysis of chitin synthesis regulation in the context of fungal pathogenesis.

3 Followers
 · 
203 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biomaterial class of chitooligosaccharides (chitin), commonly found in insects and fungi, is one of the most abundant on earth. Substantial evidence implicates chitin in mediating a diverse array of plant cellular signaling events, including the induction of plant defense mechanisms against invading pests. However, these recognition and mediation mechanisms, including the binding kinetics between chitin and their plant recognition receptors, are not fully understood. Therefore, the creation of a platform capable of both interfacing with chitin and plant cell receptors, and monitoring their interactions, would significantly advance our understanding of this plant defense elicitor. Recently, a label-free, highly sensitive biosensor platform, based on Whispering Gallery Mode optical microresonators, has been developed to study such biomolecular interactions. Here, we demonstrate how this unique platform can be interfaced with chitin using simple carbohydrate chemistry. The surface chemistry is demonstrated using X-ray photoelectron spectroscopy, fluorescence microscopy, optical profilometry, ellipsometry, and contact angle measurements. The resulting surface is uniform, with an average surface roughness of 1.25nm, and is active toward chitin recognition elements. Optical loss measurements using standard quantitative cavity analysis techniques demonstrate that the bioconjugated platforms maintain the high performance (Q>10(6)) required to track binding interactions in this system. The platform is able to detect lectin, which binds COs, at 10μg/mL concentration. This biosensor platform's unique capabilities for label-free, high sensitivity biodetection, when properly interfaced with the biomaterials of interest, could provide the basis for a robust analytical technique to probe the binding dynamics of chitin-plant cell receptors.
    Colloids and surfaces B: Biointerfaces 10/2014; 122:241–249. DOI:10.1016/j.colsurfb.2014.06.067 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large proportion of Candida albicans cell surface proteins are decorated post-translationally by glycosylation. Indeed N-glycosylation is critical for cell wall biogenesis in this major fungal pathogen and for its interactions with host cells. A detailed understanding of N-glycosylation will yield deeper insights into host-pathogen interactions. However, the analysis of N-glycosylation is extremely challenging because of the complexity and heterogeneity of these structures. Therefore, in an attempt to reduce this complexity and facilitate the analysis of N-glycosylation, we have developed new synthetic C. albicans reporters that carry a single N-linked glycosylation site derived from Saccharomyces cerevisiae Suc2. These glycosylation reporters, which carry C. albicans Hex1 or Sap2 signal sequences plus carboxy-terminal FLAG3 and His6 tags, were expressed in C. albicans from the ACT1 promoter. The reporter proteins were successfully secreted and hyperglycosylated by C. albicans cells, and their outer chain glycosylation was dependent on Och1 and Pmr1, which are required for N-mannan synthesis, but not on Mnt1 and Mnt2 which are only required for O-mannosylation. These reporters are useful tools for the experimental dissection of N-glycosylation and other related processes in C. albicans, such as secretion.
    Fungal Genetics and Biology 04/2013; 56(100). DOI:10.1016/j.fgb.2013.03.009 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) was shown to be essential for chitin recognition, whereas in rice (Oryza sativa), the LysM-containing protein, CEBiP (for chitin elicitor-binding protein), was shown to be involved in chitin recognition. Unlike LYK1/CERK1, CEBiP lacks an intracellular kinase domain. Arabidopsis possesses three CEBiP-like genes. Our data show that mutations in these genes, either singly or in combination, did not compromise the response to chitin treatment. Arabidopsis also contains five LYK genes. Analysis of mutations in LYK2, -3, -4, or -5 showed that LYK4 is also involved in chitin signaling. The lyk4 mutants showed reduced induction of chitin-responsive genes and diminished chitin-induced cytosolic calcium elevation as well as enhanced susceptibility to both the bacterial pathogen Pseudomonas syringae pv tomato DC3000 and the fungal pathogen Alternaria brassicicola, although these phenotypes were not as dramatic as that seen in the lyk1/cerk1 mutants. Similar to LYK1/CERK1, the LYK4 protein was also localized to the plasma membrane. Therefore, LYK4 may play a role in the chitin recognition receptor complex to assist chitin signal transduction and plant innate immunity.
    Plant physiology 06/2012; 160(1):396-406. DOI:10.1104/pp.112.201699 · 7.39 Impact Factor

Preview

Download
5 Downloads
Available from