Article

Increased inflammation and lethality of Dusp1-/- mice in polymicrobial peritonitis models.

Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany.
Immunology (Impact Factor: 3.71). 11/2010; 131(3):395-404. DOI: 10.1111/j.1365-2567.2010.03313.x
Source: PubMed

ABSTRACT The mitogen-activated protein kinase phosphatase Dusp1 (also known as MKP-1) is essential for control of the inflammatory response to systemic challenge with the lipopolysaccharide of Gram-negative bacteria. Here, we have investigated the consequences of Dusp1-deficiency in colon ascendens stent peritonitis (CASP) and caecal ligation and puncture (CLP), two mouse models of septic peritonitis. Following CASP, Dusp1(-/-) mice had increased serum levels of CCL4, interleukin-10 (IL-10) and IL-6, with differences from wild-type mice being dependent on severity of sepsis. These cytokines, along with inducible nitric oxide synthase messenger RNA, were also expressed at higher levels in spleen and liver. Similar over-production of these cytokines was detected in the CLP model, with even larger differences from wild-type mice. Despite the increased inflammatory response, bacterial clearance was impaired in Dusp1(-/-) mice subjected to CASP and CLP. Dusp1(-/-) mice suffered increased lethality in both peritonitis models. Together our data indicate that exaggerated inflammatory responses to gut bacteria introduced into the peritoneum in the absence of Dusp1 do not help to control bacterial replication but are detrimental for the host.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatases are important regulators of intracellular signaling events, and their functions have been implicated in many biological processes. Dual-specificity phosphatases (DUSPs), whose family currently contains 25 members, are phosphatases that can dephosphorylate both tyrosine and serine/threonine residues of their substrates. The archetypical DUSP, DUSP1/MKP1, was initially discovered to regulate the activities of MAP kinases by dephosphorylating the TXY motif in the kinase domain. However, although DUSPs were discovered more than a decade ago, only in the past few years have their various functions begun to be described. DUSPs can be categorized based on the presence or absence of a MAP kinase-interacting domain into typical DUSPs and atypical DUSPs, respectively. In this review, we discuss the current understanding of how the activities of typical DUSPs are regulated and how typical DUSPs can regulate the functions of their targets. We also summarize recent findings from several in vivo DUSP-deficient mouse models that studied the involvement of DUSPs during the development and functioning of T cells. Finally, we discuss briefly the potential roles of DUSPs in the regulation of non-MAP kinase targets, as well as in the modulation of tumorigenesis.
    Cell & bioscience. 07/2012; 2(1):24.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute lung injury (ALI) is mediated by an early proinflammatory response resulting from either a direct or indirect insult to the lung mediating neutrophil infiltration and consequent disruption of the alveolar capillary membrane ultimately leading to refractory hypoxemia. The mitogen-activated protein kinase (MAPK) pathways are a key component of the molecular response activated by those insults triggering the proinflammatory response in ALI. The MAPK pathways are counterbalanced by a set of dual-specific phosphatases (DUSP) that deactivate the kinases by removing phosphate groups from tyrosine or threonine residues. We have previously shown that one DUSP, MKP-2, regulates the MAPK pathway in a model of sepsis-induced inflammation; however, the role of MKP-2 in modulating the inflammatory response in ALI has not been previously investigated. We utilized both MKP-2-null (MKP-2(-/-)) mice and MKP-2 knockdown in a murine macrophage cell line to elucidate the role of MKP-2 in regulating inflammation during ALI. Our data demonstrated attenuated proinflammatory cytokine production as well as decreased neutrophil infiltration in the lungs of MKP-2(-/-) mice following direct, intratracheal LPS. Importantly, when challenged with a viable pathogen, this decrease in neutrophil infiltration did not impact the ability of MKP-2(-/-) mice to clear either gram-positive or gram-negative bacteria. Furthermore, MKP-2 knockdown led to an attenuated proinflammatory response and was associated with an increase in phosphorylation of ERK and induction of a related DUSP, MKP-1. These data suggest that altering MKP-2 activity may have therapeutic potential to reduce lung inflammation in ALI without impacting pathogen clearance.
    AJP Lung Cellular and Molecular Physiology 06/2012; 303(3):L251-8. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SCOPE: Central sensitization is implicated in the pathology of temporomandibular joint disorder and other types of orofacial pain. We investigated the effects of dietary cocoa on expression of proteins involved in the development of central sensitization in the spinal trigeminal nucleus (STN) in response to inflammatory stimulation of trigeminal nerves. METHODS AND RESULTS: Male Sprague-Dawley rats were fed either a control diet or an isocaloric diet consisting of 10% cocoa powder 14 days prior to bilateral injection of complete Freund's adjuvant (CFA) into the temporomandibular joint to promote prolonged activation of trigeminal ganglion neurons and glia. While dietary cocoa stimulated basal expression of glutamate-aspartate transporter and mitogen-activated protein kinase phosphatase-1 when compared to animals on a normal diet, cocoa suppressed basal calcitonin gene-related peptide levels in the STN. CFA-stimulated levels of protein kinase A, P2X3 , P-p38, glial fibrillary-associated protein, and OX-42, whose elevated levels in the STN are implicated in central sensitization, were repressed to near control levels in animals on a cocoa-enriched diet. Similarly, dietary cocoa repressed CFA-stimulated inflammatory cytokine expression. CONCLUSION: Based on our findings, we speculate that cocoa-enriched diets could be beneficial as a natural therapeutic option for temporomandibular joint disorder and other chronic orofacial pain conditions.
    Molecular Nutrition & Food Research 04/2013; · 4.31 Impact Factor

Full-text (2 Sources)

View
16 Downloads
Available from
May 21, 2014