Article

Ellagic acid, a natural polyphenolic compound, induces apoptosis and potentiates retinoic acid-induced differentiation of human leukemia HL-60 cells

Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina-machi, Kitaadachi-gun, Saitama, Japan.
International journal of hematology (Impact Factor: 1.68). 07/2010; 92(1):136-43. DOI: 10.1007/s12185-010-0627-4
Source: PubMed

ABSTRACT All-trans retinoic acid (ATRA) is a standard drug used for differentiation therapy in acute promyelocytic leukemia. To potentiate this therapy, we examined the effect of ellagic acid (EA), a natural polyphenolic compound with antiproliferative and antioxidant properties, on the growth and differentiation of HL-60 acute myeloid leukemia cells. EA was found to induce apoptosis, which was blocked by pan-caspase inhibitor, Z-VAD-FMK. EA activated the caspase-3 pathway and enhanced the expressions of myeloid differentiation markers (CD11b, MRP-14 protein, granulocytic morphology) induced by ATRA treatment. These results indicate that EA is a potent apoptosis inducer and also effectively potentiates ATRA-induced myeloid differentiation of HL-60 cells.

0 Followers
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigallocatechin gallate (EGCG), ellagic acid (EA) and rosmarinic acid (RA) are natural polyphenols exerting cancer chemopreventive effects. Ribonucleotide reductase (RR; EC 1.17.4.1) converts ribonucleoside diphosphates into deoxyribonucleoside diphosphates being essential for DNA replication, which is why the enzyme is considered an excellent target for anticancer therapy. EGCG, EA, and RA dose-dependently inhibited the growth of human HL-60 promyelocytic leukemia cells, exerted strong free radical scavenging potential, and significantly imbalanced nuclear deoxyribonucleoside triphosphate (dNTP) concentrations without distinctly affecting the protein levels of RR subunits (R1, R2, p53R2). Incorporation of (14)C-cytidine into nascent DNA of tumor cells was also significantly lowered, being equivalent to an inhibition of DNA synthesis. Consequently, treatment with EGCG and RA attenuated cells in the G0/G1 phase of the cell cycle, finally resulting in a pronounced induction of apoptosis. Sequential combination of EA and RA with the first-line antileukemic agent arabinofuranosylcytosine (AraC) synergistically potentiated the antiproliferative effect of AraC, whereas EGCG plus AraC yielded additive effects. Taken together, we show for the first time that EGCG, EA, and RA perturbed dNTP levels and inhibited cell proliferation in human HL-60 promyelocytic leukemia cells, with EGCG and RA causing a pronounced induction of apoptosis. Due to these effects and synergism with AraC, these food ingredients deserve further preclinical and in vivo testing as inhibitors of leukemic cell proliferation. Copyright © 2014 Elsevier GmbH. All rights reserved.
    Phytomedicine: international journal of phytotherapy and phytopharmacology 01/2015; 22(1):213-22. DOI:10.1016/j.phymed.2014.11.017 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The histone methyltransferase EZH2 has been in the limelight of the field of cancer epigenetics for a decade now since it was first discovered to exhibit an elevated expression in metastatic prostate cancer. It persists to attract much scientific attention due to its important role in the process of cancer development and its potential of being an effective therapeutic target. Thus here we review the dysregulation of EZH2 in prostate cancer, its function, upstream regulators, downstream effectors, and current status of EZH2-targeting approaches. This review therefore provides a comprehensive overview of EZH2 in the context of prostate cancer.
    Protein & Cell 04/2013; 4(5). DOI:10.1007/s13238-013-2093-2 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human leukemia results from multiple mutations that lead to abnormalities in the expressions and functions of genes that maintain the delicate balance between proliferation, differentiation and apoptosis. Continued research on the molecular aspects of leukemia cells has resulted in the developments of several potentially useful therapeutic agents. Discovery of new cellular and/or molecular pathways enabling innate or acquired resistance of cancers to current chemotherapeutics to be overcome is therefore of crucial importance if one wants to efficiently combat those cancers associated with dismal prognoses. In this concern, natural compounds are regarded as new chemical entities for the development of drugs against various pharmacological targets, including cancer, and, above all, leukemia.
    Mini Reviews in Medicinal Chemistry 06/2011; 11(6):492-502. DOI:10.2174/138955711795843284 · 3.19 Impact Factor