Reporter-Based Isolation of Induced Pluripotent Stem Cell- and Embryonic Stem Cell-Derived Cardiac Progenitors Reveals Limited Gene Expression Variance

Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, 94158, USA.
Circulation Research (Impact Factor: 11.09). 08/2010; 107(3):340-7. DOI: 10.1161/CIRCRESAHA.109.215434
Source: PubMed

ABSTRACT Induced pluripotent stem (iPS) cells can differentiate into multiple cell types, including cardiomyocytes and have tremendous potential for drug discovery and regenerative therapies. However, it is unknown how much variability exists between differentiated lineages from independent iPS cell lines and, specifically, how similar iPS cell-derived cardiomyocytes (iPS-CMs) are to embryonic stem (ES) cell-derived cardiomyocytes (ES-CMs).
We investigated how much variability exists between differentiated lineages from independent iPS cell lines and how similar iPS-CMs are to ES-CMs.
We generated mouse iPS cells in which expression of NKX2-5, an early cardiac transcription factor, was marked by transgenic green fluorescent protein (GFP). Isolation of iPS- and ES-derived NKX2-5-GFP(+) cardiac progenitor pools, marked by identical reporters, revealed unexpectedly high similarity in genome-wide mRNA expression levels. Furthermore, the variability between cardiac progenitors derived from independent iPS lines was minimal. The NKX2-5-GFP(+) iPS cells formed cardiomyocytes by numerous induction protocols and could survive upon transplantation into the infarcted mouse heart without formation of teratomas.
Despite the line-to-line variability of gene expression in the undifferentiated state of ES and iPS cells, the variance narrows significantly in lineage-specific iPS-derived cardiac progenitors, and these progenitor cells can be isolated and used for transplantation without generation of unwanted cell types.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells are the foundations of regenerative medicine. However, the worst possible complication of using pluripotent stem cells in therapy could be iatrogenic cancerogenesis. Nevertheless, despite the rapid progress in the development of new techniques for induction of pluripotency and for directed differentiation, risks of cancerogenic transformation of therapeutically implanted pluripotent stem cells still persist. 'Above all, do no harm', as quoted from the Hippocratic Oath, is our ultimate creed. Therefore, the primary goal in designing any therapeutic regimes involving stem cells should be the elimination of any possibilities of their neoplasmic transformation. I review here the basic strategies that have been designed to attain this goal: sorting out undifferentiated, pluripotent stem cells with antibodies targeting surface-displayed biomarkers; sorting in differentiating cells, which express recombinant proteins as reporters; killing undifferentiated stem cells with toxic antibodies or antibody-guided toxins; eliminating undifferentiated stem cells with cytotoxic drugs; making potentially tumorigenic stem cells sensitive to pro-drugs by transformation with suicide-inducing genes; eradication of differentiation-refractive stem cells by self-triggered transgenic expression of human recombinant DNases. Every pluripotent undifferentiated stem cell poses a risk of neoplasmic transformation. Therefore, the aforementioned or other novel strategies that would safeguard against iatrogenic transformation of these stem cells should be considered for incorporation into every stem cell therapy trial.
    Stem Cell Research & Therapy 06/2014; 5(3):73. DOI:10.1186/scrt462 · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification.
    Nature Biotechnology 08/2014; DOI:10.1038/nbt.2989 · 39.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coronary artery disease with associated myocardial infarction continues to be a major cause of death and morbidity around the world, despite significant advances in therapy. Patients who have large myocardial infarctions are at highest risk for progressive heart failure and death, and cell-based therapies offer new hope for these patients. A recently discovered cell source for cardiac repair has emerged as a result of a breakthrough reprogramming somatic cells to induced pluripotent stem cells (iPSCs). The iPSCs can proliferate indefinitely in culture and can differentiate into cardiac lineages, including cardiomyocytes, smooth muscle cells, endothelial cells, and cardiac progenitors. Thus, large quantities of desired cell products can be generated without being limited by cellular senescence. The iPSCs can be obtained from patients to allow autologous therapy or, alternatively, banks of human leukocyte antigen diverse iPSCs are possible for allogeneic therapy. Preclinical animal studies using a variety of cell preparations generated from iPSCs have shown evidence of cardiac repair. Methodology for the production of clinical grade products from human iPSCs is in place. Ongoing studies for the safety of various iPSC preparations with regard to the risk of tumor formation, immune rejection, induction of arrhythmias, and formation of stable cardiac grafts are needed as the field advances toward the first-in-man trials of iPSCs after myocardial infarction.
    Circulation Research 04/2014; 114(8):1328-45. DOI:10.1161/CIRCRESAHA.114.300556 · 11.09 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014

Similar Publications