Article

Genetic variation and neuroimaging measures in Alzheimer disease.

Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
Archives of neurology (Impact Factor: 7.58). 06/2010; 67(6):677-85. DOI: 10.1001/archneurol.2010.108
Source: PubMed

ABSTRACT To investigate whether genome-wide association study (GWAS)-validated and GWAS-promising candidate loci influence magnetic resonance imaging measures and clinical Alzheimer's disease (AD) status.
Multicenter case-control study of genetic and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative.
Multicenter GWAS. Patients A total of 168 individuals with probable AD, 357 with mild cognitive impairment, and 215 cognitively normal control individuals recruited from more than 50 Alzheimer's Disease Neuroimaging Initiative centers in the United States and Canada. All study participants had APOE and genome-wide genetic data available.
We investigated the influence of GWAS-validated and GWAS-promising novel AD loci on hippocampal volume, amygdala volume, white matter lesion volume, entorhinal cortex thickness, parahippocampal gyrus thickness, and temporal pole cortex thickness.
Markers at the APOE locus were associated with all phenotypes except white matter lesion volume (all false discovery rate-corrected P values < .001). Novel and established AD loci identified by prior GWASs showed a significant cumulative score-based effect (false discovery rate P = .04) on all analyzed neuroimaging measures. The GWAS-validated variants at the CR1 and PICALM loci and markers at 2 novel loci (BIN1 and CNTN5) showed association with multiple magnetic resonance imaging characteristics (false discovery rate P < .05).
Loci associated with AD also influence neuroimaging correlates of this disease. Furthermore, neuroimaging analysis identified 2 additional loci of high interest for further study.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is accompanied by gradually increasing impairment of cognitive abilities and constitutes the main risk factor of neurodegenerative conditions like Alzheimer's disease (AD). The underlying mechanisms are however not well understood. Here we analyze the hippocampal transcriptome of young adult mice and two groups of mice at advanced age using RNA sequencing. This approach enabled us to test differential expression of coding and non-coding transcripts, as well as differential splicing and RNA editing. We report a specific age-associated gene expression signature that is associated with major genetic risk factors for late-onset AD (LOAD). This signature is dominated by neuroinflammatory processes, specifically activation of the complement system at the level of increased gene expression, while de-regulation of neuronal plasticity appears to be mediated by compromised RNA splicing.
    Frontiers in Cellular Neuroscience 11/2014; 8(373):1-15. · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obsessive-compulsive disorder (OCD) occurs in ∼1-3% of the general population, and its often rather early onset causes major disabilities in the everyday lives of patients. Although the heritability of OCD is between 35-65%, many linkage, association, and genome-wide association studies have failed to identify single genes that exhibit high effect sizes. Several neuroimaging studies have revealed structural and functional alterations mainly in cortico-striato-thalamic loops. However, there is also marked heterogeneity across studies. These inconsistencies in genetic and neuroimaging studies may be due to the heterogeneous and complex phenotypes of OCD. Under the consideration that genetic variants may also influence neuroimaging in OCD, researchers have started to combine both domains in the field of imaging genetics. Here, we conducted a systematic search of PubMed and Google Scholar literature for articles that address genetic imaging in OCD and related disorders (published through March 2014). We selected 8 publications that describe the combination of imaging genetics with OCD, and extended it with 43 publications of comorbid psychiatric disorders. The most promising findings of this systematic review point to the involvement of variants in genes involved in the serotonergic (HTTLPR, HTR2A), dopaminergic (COMT, DAT), and glutamatergic (SLC1A1, SAPAP) systems. However, the field of imaging genetics must be further explored, best through investigations that combine multimodal imaging techniques with genetic profiling, particularly profiling techniques that employ polygenetic approaches, with much larger sample sizes than have been used up to now.
    Progress in neurobiology 07/2014; · 9.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a large meta-analysis of five genome wide association studies (GWAS) identified a novel locus (rs2718058) adjacent to NME8 that played a preventive role in Alzheimer's disease (AD). However, this link between the single nucleotide polymorphism (SNP) rs2718058 and the pathology of AD have not been mentioned yet. Therefore, this study assessed the strength of association between the NME8 rs2718058 genotypes and AD-related measures including the cerebrospinal fluid (CSF) amyloid beta, tau, P-tau concentrations, neuroimaging biomarkers and cognitive performance, in a large cohort from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We used information of a total of 719 individuals, including 211 normal cognition (NC), 346 mild cognitive impairment (MCI) and 162 AD. Although we didn't observe a positive relationship between rs2718058 and AD, it was significantly associated with several AD related endophenotypes. Among the normal cognitively normal participants, the minor allele G carriers showed significantly associated with higher CDRSB score than A allele carriers (P = 0.021). Occipital gyrus atrophy were significantly associated with NME8 genotype status (P = 0.002), with A allele carriers has more atrophy than the minor allele G carriers in AD patients; lateral ventricle (both right and left) cerebral metabolic rate for glucose (CMRgl) were significantly associated with NME8 genotype (P<0.05), with GA genotype had higher metabolism than GG and AA genotypes in MCI group; the atrophic right hippocampus in 18 months is significantly different between the three group, with GG and AA genotypes had more hippocampus atrophy than GA genotypes in the whole group. Together, our results are consistent with the direction of previous research, suggesting that NME8 rs2718058 appears to play a role in lowering the brain neurodegeneration.
    PLoS ONE 12/2014; 9(12):e114777. · 3.53 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
May 17, 2014