Article

Radiation induced stress proteins.

Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
International journal of clinical pharmacology and therapeutics (Impact Factor: 1.2). 07/2010; 48(7):492-3.
Source: PubMed
0 Bookmarks
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although cancer progression is primarily driven by the expansion of tumor cells, the tumor microenvironment and anti-tumor immunity also play important roles. Herein, we consider how tumors can become established by escaping immune surveillance and also how cancer cells can be rendered visible to the immune system by standard therapies such as radiotherapy or chemotherapy, either alone or in combination with additional immune stimulators. Although local radiotherapy results in DNA damage (targeted effects), it is also capable of inducing immunogenic forms of tumor cell death which are associated with a release of immune activating danger signals (non-targeted effects), such as necrosis. Necrotic tumor cells may result from continued exposure to death stimuli and/or an impaired phosphatidylserine (PS) dependent clearance of the dying tumor cells. In such circumstances, mature dendritic cells take up tumor antigen and mediate the induction of adaptive and innate anti-tumor immunity. Locally-triggered, systemic immune activation can also lead to a spontaneous regression of tumors or metastases that are outside the radiation field - an effect which is termed abscopal. Preclinical studies have demonstrated that combining radiotherapy with immune stimulation can induce anti-tumor immunity. Given that it takes time for immunity to develop following exposure to immunogenic tumor cells, we propose practical combination therapies that should be considered as a basis for future research and clinical practice. It is essential that radiation oncologists become more aware of the importance of the immune system to the success of cancer therapy.
    Current Medicinal Chemistry 03/2012; 19(12):1751-64. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer.
    Frontiers in Oncology 01/2013; 3:14.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles (NP) as carriers for anti-cancer drugs have shown great promise. Specific targeting of NP to malignant cells, however, remains an unsolved problem. Conjugation of antibodies specific for tumor membrane antigens to NP represents one approach to improve specificity and to increase therapeutic efficacy. In the present study, for the first time a novel membrane heat shock protein (Hsp70)-specific antibody (cmHsp70.1) was coupled to human serum albumin (HSA) NP, loaded with microRNA (miRNA) plasmids to target the inhibitor of apoptosis protein survivin. The physicochemical properties of monodisperse miRNA-loaded NP showed a diameter of 180nm to 220nm, a plasmid incorporation of more than 95% and a surface binding capacity of the antibody of 70 - 80%. Antibody-conjugated NP displayed an increased cellular uptake in U87MG and LN229 glioblastoma cells compared to isotype control antibody, PEG-coupled controls and peripheral blood lymphocytes (PBL). Survivin expression was significantly reduced in cells treated with the Hsp70-miRNA-NP as compared to non-conjugated NP. Hsp70-miRNA-NP enhanced radiation-induced increase in caspase 3/7 activity and decrease in clonogenic cell survival. In summary, cmHsp70.1 miRNA-NP comprise an enhanced tumor cell uptake and increased therapeutic efficacy of radiation therapy in vitro and provide the basis for the development of antibody-based advanced carrier systems for a tumor cell specific targeting.
    Journal of Controlled Release 09/2013; · 7.63 Impact Factor

Full-text (2 Sources)

View
19 Downloads
Available from
May 30, 2014