Article

Niaspan treatment induces neuroprotection after stroke.

Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA.
Neurobiology of Disease (Impact Factor: 5.62). 10/2010; 40(1):277-83. DOI: 10.1016/j.nbd.2010.05.034
Source: PubMed

ABSTRACT Niaspan, an extended-release formulation of Niacin (vitamin B3), has been widely used to increase high density lipoprotein (HDL) cholesterol and to prevent cardiovascular diseases and stroke. In this study, we tested whether Niaspan administered acutely after stroke is neuroprotective.
Adult male rats (n=8/group) were subjected to 2h of middle cerebral artery occlusion (MCAo) and treated with or without different doses of Niaspan (20, 40 or 80 mg/kg) at 2 and 24h after MCAo. A battery of functional outcome tests was performed, and serum HDL and triglycerides were measured. Rats were sacrificed at 7 days after MCAo and lesion volumes were measured. The optimal dose of Niaspan treatment of stroke was chosen for immunostaining: deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), cleaved caspase-3, tumor necrosis factor alpha (TNF-alpha), vascular endothelial growth factor (VEGF) and phosphorylated phosphatidylinositol 3-kinase (p-PI3K). Another set of rats (n=4/group) were killed at 7 days after MCAo for Western blot assay.
Niaspan dose-dependently reduced infarct volume and improved functional outcome after stroke. No significant difference in HDL and triglyceride levels was detected between Niaspan treatments and MCAo control groups. Niaspan treatment significantly decreased the number of TUNEL-positive cells (105+/-17) and cleaved caspase-3 expression (381+/-33) in the ischemic brain compared to MCAo control (165+/-18; 650+/-61, respectively; p<or=0.05). Niaspan treatment significantly reduced the expression of TNF-alpha (9.7+/-1.1% vs. 16+/-2.2%; p<or=0.05) and negative correlations were observed between the functional tests and the expression of TNF-alpha (r=-0.71, p<or=0.05). Niaspan treatment also significantly increased the expression of VEGF (5.2+/-0.9%) and PI3K/Akt (0.381+/-0.04%) in the ischemic brain compared with non-treated MCAo control (2.6+/-0.4%; 0.24+/-0.03, respectively; p<or=0.05). The functional outcome was positively correlated with p-PI3K (r=0.7, p<or=0.05).
Treatment of stroke with Niaspan at 2h after MCAo reduces infarct volume and improves neurological outcome and provides neuroprotection. The neuroprotective effects of Niaspan were associated with reduction of apoptosis and attenuation of TNF-alpha expression. VEGF and the PI3K/Akt pathway may contribute to the Niaspan-induced neuroprotection after stroke.

0 Bookmarks
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ischemic stroke is responsible for many deaths and long-term disability world wide. Development of effective therapy has been the target of intense research. Accumulating preclinical literature has shown that substantial functional improvement after stroke can be achieved using subacutely administered cell-based and pharmacological therapies. This review will discuss some of the latest findings on bone marrow-derived mesenchymal stem cells (BMSCs), human umbilical cord blood cells, and off-label use of some pharmacological agents, to promote recovery processes in the sub-acute and chronic phases following stroke. This review paper also focuses on molecular mechanisms underlying the cell-based and pharmacological restorative processes, which enhance angiogenesis, arteriogenesis, neurogenesis, and white matter remodeling following cerebral ischemia as well as an analysis of the interaction/coupling among these restorative events. In addition, the role of microRNAs mediating the intercellular communication between exogenously administered cells and parenchymal cells, and their effects on the regulation of angiogenesis and neuronal progenitor cell proliferation and differentiation, and brain plasticity after stroke are described.
    Frontiers in Human Neuroscience 01/2014; 8:382. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between environmental factors and a susceptible genetic background. Experimental autoimmune encephalomyelitis (EAE) has been widely used to investigate the mechanisms underlying MS pathogenesis. Chemokines, such as CCL2, are involved in the development of EAE. We have previously shown that thiamine deficiency (TD) induced CCL2 in neurons. We hypothesized that TD may affect the pathogenesis of EAE. In this study, EAE was induced in C57BL/6J mice by the injection of myelin oligodendroglial glycoprotein (MOG) peptides 35-55 with or without TD. TD aggravated the development of EAE, which was indicated by clinical scores and pathologic alterations in the spinal cord. TD also accelerated the development of EAE in an adoptive transfer EAE model. TD caused microglial activation and a drastic increase (up 140%) in leukocyte infiltration in the spinal cord of the EAE mice; specifically, TD increased Th1 and Th17 cells. TD upregulated the expression of CCL2 and its receptor CCR2 in the spinal cord of EAE mice. Cells in peripheral lymph node and spleen isolated from MOG-primed TD mice showed much stronger proliferative responses to MOG. CCL2 stimulated the proliferation and migration of T lymphocytes in vitro. Our results suggested that TD exacerbated the development of EAE through activating CCL2 and inducing pathologic inflammation.
    The Journal of Immunology 07/2014; 193(5):2157. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.
    PLoS ONE 01/2014; 9(11):e112310. · 3.53 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
May 22, 2014