Modeling maternal-offspring gene-gene interactions: The extended-MFG test

Department of Biostatistics, University of California, Los Angeles, California, USA.
Genetic Epidemiology (Impact Factor: 2.6). 07/2010; 34(5):512-21. DOI: 10.1002/gepi.20508
Source: PubMed

ABSTRACT Maternal-fetal genotype (MFG) incompatibility is an interaction between the genes of a mother and offspring at a particular locus that adversely affects the developing fetus, thereby increasing susceptibility to disease. Statistical methods for examining MFG incompatibility as a disease risk factor have been developed for nuclear families. Because families collected as part of a study can be large and complex, containing multiple generations and marriage loops, we create the Extended-MFG (EMFG) Test, a model-based likelihood approach, to allow for arbitrary family structures. We modify the MFG test by replacing the nuclear-family based "mating type" approach with Ott's representation of a pedigree likelihood and calculating MFG incompatibility along with the Mendelian transmission probability. In order to allow for extension to arbitrary family structures, we make a slightly more stringent assumption of random mating with respect to the locus of interest. Simulations show that the EMFG test has appropriate type-I error rate, power, and precise parameter estimation when random mating holds. Our simulations and real data example illustrate that the chief advantages of the EMFG test over the earlier nuclear family version of the MFG test are improved accuracy of parameter estimation and power gains in the presence of missing genotypes.

11 Reads
  • Source
    • "The first of these, MFG Incompatibility, models interactions between maternal and child genotypes (Childs et al., 2010). The classic example is Rh maternal–fetal incompatibility. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Mendel is one of the few statistical genetics packages that provide a full spectrum of gene mapping methods, ranging from parametric linkage in large pedigrees to genome-wide association with rare variants. Our latest additions to Mendel anticipate and respond to the needs of the genetics community. Compared with earlier versions, Mendel is faster and easier to use and has a wider range of applications. Supported platforms include Linux, MacOS and Windows. Availability: Free from
    Bioinformatics 04/2013; 29(12). DOI:10.1093/bioinformatics/btt187 · 4.98 Impact Factor
  • Source
    • "To evaluate the presence of maternal–fetal genotype incompatibility on risk for schizophrenia, we used " MFG " option in Mendel (Sinsheimer et al., 2003; Childs et al., 2010). The MFG option implements an affected-only likelihood ratio test relying on the joint estimation of offspring allelic effects, maternal allelic effects, and interactions between maternal and offspring genotypes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the association of common genetic variation in the extended MHC region with schizophrenia is the most significant yet discovered, the MHC region is one of the more complex regions of the human genome, with unusually high gene density and long-range linkage disequilibrium. The statistical test on which the MHC association is based is a relatively simple, additive model which uses logistic regression of SNP genotypes to predict case-control status. However, it is plausible that more complex models underlie this association. Using a well-characterized sample of trios, we evaluated more complex models by looking for evidence for: (a) non-random mating for HLA alleles, schizophrenia risk profiles, and ancestry; (b) parent-of-origin effects for HLA alleles; and (c) maternal-fetal genotype incompatibility in the HLA. We found no evidence for non-random mating in the parents of individuals with schizophrenia in terms of MHC genotypes or schizophrenia risk profile scores. However, there was evidence of non-random mating that appeared mostly to be driven by ancestry. We did not detect over-transmission of HLA alleles to affected offspring via the general TDT test (without regard to parent of origin) or preferential transmission via paternal or maternal inheritance. We evaluated the hypothesis that maternal-fetal HLA incompatibility may increase risk for schizophrenia using eight classical HLA loci. The most significant alleles were in HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1 but none was significant after accounting for multiple comparisons. We did not find evidence to support more complex models of gene action, but statistical power may have been limiting.
    Schizophrenia Research 11/2012; 143(1). DOI:10.1016/j.schres.2012.11.002 · 3.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many complex genetic effects, including epigenetic effects, may be expected to operate via mechanisms in the inter-uterine environment. A popular design for the investigation of such effects, including effects of parent-of-origin (imprinting), maternal genotype, and maternal-fetal genotype interactions, is to collect DNA from affected offspring and their mothers (case/mother duos) and to compare with an appropriate control sample. An alternative design uses data from cases and both parents (case/parent trios) but does not require controls. In this study, we describe a novel implementation of a multinomial modeling approach that allows the estimation of such genetic effects using either case/mother duos or case/parent trios. We investigate the performance of our approach using computer simulations and explore the sample sizes and data structures required to provide high power for detection of effects and accurate estimation of the relative risks conferred. Through the incorporation of additional assumptions (such as Hardy-Weinberg equilibrium, random mating and known allele frequencies) and/or the incorporation of additional types of control sample (such as unrelated controls, controls and their mothers, or both parents of controls), we show that the (relative risk) parameters of interest are identifiable and well estimated. Nevertheless, parameter interpretation can be complex, as we illustrate by demonstrating the mathematical equivalence between various different parameterizations. Our approach scales up easily to allow the analysis of large-scale genome-wide association data, provided both mothers and affected offspring have been genotyped at all variants of interest.
    Genetic Epidemiology 01/2011; 35(1):19-45. DOI:10.1002/gepi.20547 · 2.60 Impact Factor
Show more


11 Reads
Available from